Абрамов В. А. Торокин А. А. Т61 Основы инженерно-технической защиты информации
Вид материала | Книга |
СодержаниеUm 007.3, smirab electronic Рк660. electronic |
- Рекомендации по моделированию системы инженерно-технической защиты информации Алгоритм, 215.16kb.
- Вестник Брянского государственного технического университета. 2008. №1(17), 119.16kb.
- Рекомендации по определению мер инженерно-технической защиты информации, 273.48kb.
- Московская финансово-юридическая академия, 33.36kb.
- Лекция 21-11-08 Организационное обеспечение, 155.63kb.
- Метод оценки эффективности иерархической системы информационной и инженерно-технической, 93.19kb.
- Учебная программа курса «методы и средства защиты компьютерной информации» Модуль, 132.53kb.
- Ии повысили уровни защиты информации и вызвали необходимость в том, чтобы эффективность, 77.16kb.
- Основы защиты компьютерной информации, 51.61kb.
- Программа курса для специальности 075300 «Организация и технология защиты информации», 462.03kb.
Рис. 3.12. Принципы пеленгования
Процессы перехвата включают также регистрацию (запись, запоминание) сигналов с добытой информацией. Регистрация сигналов производится путем аудио- и видеозаписи, записи на магнитные и оптические диски, на обычной, электрохимической, термочувствительной и светочувствительной бумаге, запоминания в устройствах полупроводниковой и других видов памяти, фотографирования изображений на экранах мониторов ПЭВМ, телевизионных приемников, осциллографов, спектроанализаторов.
3.3. Способы и средства подслушивания
При непосредственном подслушивании акустические сигналы, распространяющиеся от источника звука прямолинейно в воздухе, по воздухопроводам или через различные ограждения (двери, стены, окна и др.) и экраны, принимаются слуховой системой злоумышленника.
Слуховая система человека обеспечивает прием акустических сигналов в диапазоне звуковых (20-20000 Гц) частот, границы которого для разных людей колеблются в широких пределах и изменяются с возрастом. Верхний предел слышимости у молодых людей составляет 16-20 кГц, для пожилых людей он снижается в среднем до 12 кГц. Диапазон интенсивности воспринимаемых ухом звуков очень велик. На частоте 1000 Гц наиболее громкий звук, который человек может вынести, примерно в 1012 интенсивнее самого слабого воспринимаемого звука. Интенсивность звука при таком большом интервале уровней измеряют относительной мерой в дБ, определяемой относительно порога слышимости человеком звука на частоте 1000 Гц. Интенсивность звука человек оценивает как его громкость. Между психологическим восприятием громкости и физической интенсивностью звука нет прямого соответствия. Громкость звука зависит не только от его интенсивности, но и от частоты. При постоянной интенсивности звуки очень высокой и очень низкой частоты кажутся более тихими, чем звуки средней частоты. Порог слышимости слуховой системы на частоте 20 Гц выше порога в диапазоне 2000-5000 Гц примерно на 70 дБ, а на частоте 10000 Гц приблизительно на 15 дБ. Следовательно, максимальная дальность непосредственного подслушивания изменяется в широких пределах в зависимости от спектра звуков говорящего человека.
Уши человека плохо приспособлены для восприятия структурных звуков, распространяющихся в твердой среде. С этой целью используются устройства - стетоскопы, которые передают колебания поверхности твердой среды распространения в слуховые проходы ушей человека. Стетоскопы широко применяются в медицинской практике для прослушивания звуков в теле человека, Они представляет собой один или два гибких звукопровода в виде резиновых или из других синтетических материалов трубок, соединенных с контактной площадкой и передающих звуковое колебание от поверхности твердого тела к ушам человека. Эти звукопроводы локализуют и направляют звуковую волну к ушам человека, а также изолируют ее от акустических помех в окружающем пространстве. Для добывания информации применяются стетоскопы, у которых площадка, контактирующая с твердой поверхностью твердой среды распространения, соединена с мембраной микрофона. Для прослушивания структурных звуков подобный акустоэлектрический преобразователь (датчик) стетоскопа прижимают или приклеивают к поверхности стены или трубы.
Основной недостаток непосредственного подслушивания - малая дальность, составляющая для речи средней (нормальной) громкости единицы и десятки метров в зависимости от уровня шума. На улице города дальность слышимости днем составляет всего несколько метров.
Подслушивание с помощью технических средств осуществляется путем:
- приема и прослушивания акустических сигналов, распространяющихся в воздухе, воде и твердых телах;
- прослушивания речи, выделяемой из перехваченных радио- и электрических сигналов функциональных каналов связи и из сигналов побочных излучений и наводок;
- применения лазерных систем подслушивания;
- использования закладных устройств;
- высокочастотного навязывания.
Конкретный метод подслушивания реализуется с использованием соответствующего технического средства. Для подслушивания применяют следующие технические средства:
- акустические приемники, в том числе с направленными микрофонами;
- приемники опасных сигналов;
- акустические закладные устройства;
- лазерные системы подслушивания;
- устройства подслушивания путем высокочастотного навязывания.
Акустические приемники обеспечивают селекцию акустических сигналов, распространяющихся в атмосфере, воде, твердых телах, преобразуют их в электрические сигналы, усиливают и обрабатывают электрические сигналы и преобразуют их в акустическую волну для восприятия информации слуховой системой человека. Кроме того, электрические сигналы с выхода приемника подаются на аудиомагнитофон для регистрации акустической информации.
Типовая структура акустического приемника приведена на рис. 3.13.
Рис. 3.13. Структурная схема акустического приемника
а) Микрофоны
Микрофон выполняет функцию акустоэлектрического преобразования и, в основном, определяет чувствительность и диапазон частот принимаемых акустических сигналов. Диаграмма направленности микрофона зависит от его конструкции.
В настоящее время созданы микрофоны, в которых используются для акустоэлектрических преобразований различные физические процессы. Классификация микрофонов приведена на рис. 3.14.
Рис. 3.14. Классификация микрофонов
Угольный микрофон представляет собой круглую коробочку с гранулированным древесным углем, закрываемую тонкой металлической упругой крышкой - мембраной. К электроду, укрепленному на дне коробочки, и мембране подается напряжение около 60 В, под действием которого в массе угольного порошка протекает электрический ток. Принцип работы угольного микрофона основан на изменении под действием акустической волны сопротивления угольного порошка, находящегося между мембраной и Неподвижным электродом. Акустическая волна приводит мембрану микрофона в колебательное движение, вследствие чего изменяется степень сжатия угольного порошка и площадь соприкосновения его гранул друг с другом. В результате этого сопротивление Порошка и сила протекающего через него тока изменяются в соответствии с громкостью звука, т. е. производится запись информации путем амплитудной модуляции электрического тока.
Номинальное сопротивление угольного микрофона зависит от зернистости и технологии обработки порошка, тока питания и других факторов. Это сопротивление может составлять у низкоомных микрофонов 35-65 Ом, среднеомных - 65-145 Ом и высокоомных - 145-300 Ом [17]. Угольные микрофоны имеют низкую стоимость, создают без дополнительного усилителя уровни сигналов, достаточные для передачи их на большие (десятки км) расстояния. Однако они узкополосные и нуждаются в мощном источнике тока. Используются в телефонной проводной связи.
Конструкция электродинамических микрофонов аналогична конструкции электродинамического громкоговорителя. Динамические микрофоны относительно просты, надежны в работе, могут работать в широком диапазоне температур и влажности, устойчивы к сотрясениям и широко применяются в различной звукоусилительной и звукозаписывающей аппаратуре.
В электромагнитном микрофоне в результате колебаний мембраны из ферромагнитного материала возникает в обмотке неподвижной катушки с сердечником, по которой протекает постоянный ток, эдс индукции, эквивалентная интенсивности звука.
Конденсаторный микрофон представляет собой капсюль, состоящий из двух параллельно расположенных пластин - электродов, один из которых массивный, другой - тонкая мембрана. Электроды образуют конденсатор, емкость которого зависит от площади пластин и расстояния между ними. К электродам подводится через резистор поляризующее постоянное напряжение. При воздействии на мембрану звуковых волн изменяются расстояния между электродами и, соответственно, емкость конденсатора. В результате этого через резистор протекает ток, амплитуда которого пропорциональна звуковому давлению на мембрану. При расстоянии между обкладками 20-40 мкм и поляризующем напряжении в несколько десятков вольт чувствительность микрофона достигает 10-20 мВ/Па.
Разновидностью конденсаторного микрофона является электретный микрофон, мембрана которого выполнена из полимерных материалов (смол), способных в сильном электрическом поле и при высокой температуре заряжаться и сохранять электрический заряд продолжительное время. Такие материалы называют электретами. Мембрана из электрета металлизируется, между пластинами после заряда возникает разность потенциалов 45-130 В. Электретные микрофоны не нуждаются во внешнем источнике и широко применяются в звукозаписывающей аппаратуре, в том числе для негласного подслушивания.
Действие пьезоэлектрического микрофона основано на возникновении эдс на поверхности пластинок из пьезоматериала, механически связанных с мембраной. Колебания мембраны под давлением акустической волны передаются пьезоэлектрической пластине, на поверхности которой возникают заряды, величина которых соответствует уровню громкости акустического сигнала.
По направленности микрофоны разделяются на ненаправленные, двухсторонней и односторонней направленности. Направленность микрофона определяется по уровню сигнала на его выходе в зависимости от поворота микрофона по отношению к источнику акустической волны в горизонтальной и вертикальной плоскостях. Ширина диаграммы направленности микрофона оценивается в градусах на уровне 0.5 (0.7) от максимальной мощности (амплитуды) электрического сигнала на его выходе. Чем уже ширина диаграммы направленности микрофона, тем меньше помех попадает на его мембрану из направлений, отличающихся от направления на источник акустического сигнала с информацией. Пространственное ограничение помех повышает отношение сигнал/помеха на мембране микрофона.
Частотные искажения при преобразовании акустической волны в электрический сигнал определяются неравномерностью частотной характеристики микрофона. Она описывается отклонением уровня спектральных составляющих звукового сигнала на выходе преобразователя по отношению к уровню спектральных составляющих входного сигнала.
Для добывания информации особый интерес представляют остронаправленные микрофоны, которые обеспечивают увеличение дальности подслушивания. Узкая диаграмма направленности микрофонов достигается за счет соответствующей конструкции микрофона, которую можно представить в виде акустической антенны с соответствующей диаграммой направленности. Такая диаграмма направленности формируется различными акустическими антеннами, содержащими плоскую, трубчатую и параболическую поверхности. За счет уменьшения ширины диаграммы направленности достигается повышение сигнал/шум на мембране микрофона на 10-20 дБ
Параболическая акустическая антенна представляет собой параболическое зеркало диаметром 20-50 см, в фокусе которого размещается мембрана микрофона.
Трубчатый остронаправленный микрофон состоит из одной трубки длиной 0.3-1 м или набора трубок, длины которых согласованы с длинами волн акустического сигнала. В горце трубок укрепляется мембрана микрофона.
На основе параболической и трубчатой акустических антенн создан, например, градиентный направленный микрофон LJM 124.2, который состоит из трубки диаметром 20 мм в поролоновом ветрозащитном чехле, параболического отражателя диаметром 175 мм из акриловой пластмассы и капсюля микрофона. Длина микрофона составляет в зависимости от модификации 150 или 200мм, Ширина диаграммы направленности такого микрофона уменьшена до 30, 20 и 10 градусов (для разных модификаций) [39].
Поверхность плоского направленного микрофона встраивается в стенку атташе-кейса или в жилет, носимый под рубашкой и пиджаком, и передает колебания мембранам микрофонов, укрепленных на плоской поверхности. За счет увеличенной площади поверхности, воспринимающей колебания акустической волны, ширина диаграммы направленности составляет 40-60 градусов. Такой микрофон обеспечивает съем речевой информации на удалении до 50 метров от источника.
Рекламируемые возможности по дальности подслушивания направленных микрофонов (до 500 и более метров) завышаются. В [57] реальная дальность подслушивания речевой информации на улице города при коэффициенте направленного действия микрофона 15 дБ оценивается всего 6-12 м. С учетом имеющихся противоречивых данных предполагается, что максимальная дальность подслушивания разговора с помощью остронаправленных микрофонов может достигать 50-100 м.
По диапазону частот микрофоны разделяются на узкополосные и широкополосные. Узкополосные микрофоны предназначены для передачи речи. Широкополосные микрофоны имеют более широкую полосу частот и преобразуют колебания в звуковом и частично ультразвуковом диапазонах частот.
По способу применения микрофоны разделяются на воздушные, гидроакустические (гидрофоны) и контактные. Контактные микрофоны предназначены для приема структурного звука. Например, контактный стетоскопный микрофон UM 012, прикрепленный к стене помещения, позволяет прослушивать разговоры в соседнем помещении при толщине стен до 50 см. Модификацией контактных микрофонов являются ларингофоны и остеофоны, воспринимающие и преобразующие в электрические сигналы механические колебания (вибрации) связок и хрящей гортани или кости черепа говорящего.
Возможности микрофонов определяются следующими характеристиками:
- осевой чувствительностью на частоте 1000 Гц;
- диаграммой направленности;
- диапазоном воспроизводимых частот колебаний акустической волны;
- неравномерностью частотной характеристики;
- масса-габаритными характеристиками.
Чувствительность - один из основных показателей микрофона и оценивается коэффициентом преобразования давления акустической волны в уровень электрического сигнала. Так как чувствительность микрофона для разных частот акустических колебаний различная, то она определяется на частоте наибольшей чувствительности слуховой системы человека, - 1000 Гц. Измерения проводятся для акустической волны, направление распространения которой перпендикулярно поверхности мембраны, в вольтах или милливольтах на Паскаль (В/Па, мВ/Па). Чувствительность микрофона зависит в основном от параметров физических процессов в акустоэлектрических преобразователях и площади мембраны микрофона.
Чувствительность микрофона повышается с увеличением площади мембраны приблизительно в квадратичной зависимости. Например, чувствительность конденсаторного микрофона с диаметром мембраны 6 мм, составляет 1.5-4 мВ/Па, для диаметра 12 мм-12.5 мВ/Па, а при диаметре 25 мм она увеличивается до 50 мВ/Па.
По конструктивному исполнению микрофоны бывают широкого применения, специальные миниатюрные и специальные субминиатюрные, применяемые в различных закладных устройствах.
Электрические сигналы на выходе микрофонов, используемых для добывания информации, в селективном усилителе обрабатываются и усиливаются до величины, необходимой для их записи с помощью аудиомагнитофона или преобразования в акустический сигнал для обеспечения восприятия информации человеком.
б) Аудиомагнитофоны
Для регистрации акустических сигналов широко применяются магнитофоны с вынесенными и встроенными микрофонами. Аудиомагнитофоны для записи речи называют диктофонами. Диктофоны для скрытного подслушивания имеют пониженные акустические шумы лентопротяжного механизма, металлический корпус для экранирования высокочастотного электромагнитного поля коллекторного двигателя, в них могут отсутствовать генераторы стирания и подмагничивания.
Характеристики некоторых типов миниатюрных магнитофонов, используемых для подслушивания, указаны в табл. 3.8.
Таблица 3.8.
Тип. фирма | Размеры, мм | Вес, г | Примечание |
L400, Olympus | 73х20х52 | 90 | Запись до 3 ч |
L200, Olympus | 107х15х51 | 125 | Можно носить в нагрудном кармане |
РК1985, РК Electronic | 55х87х21 | 160 | Питание 1.5В, время работы 11 ч |
Sony-909, Sony | 68х65х19 | - | В металлическом корпусе, 4 дорожки |
AD, Knowledge Express | 65х102х17 | 108 | Запись на удалении до 15м |
TP-X900, Aiwa | 167х94х43 | 315 | Шифрование при записи |
Запись речи в диктофонах производится на микрокассете со скоростью 2.4 или 1.2 см/с, длительность записи в зависимости от скорости и типа кассеты составляет от 15 мин. до 3-х часов. Различные модели диктофонов могут иметь сервисные функции: активация (включение) записи голосом, возможность подключения внешнего микрофона, автостоп и автореверс, жидкокристаллический дисплей с индикацией режимов работы и расхода ленты.
в) Приемники опасных сигналов
Для приема опасных сигналов, несущих речевую конфиденциальную информацию, используют как бытовые, так и специальные приемники радио и электрических сигналов. Однако возможности бытовой радиоприемной аппаратуры ограничены узким диапазоном частот, выделенной для радиовещания. В диапазоне длинных волн и средних волн радиовещание осуществляется в интервале 148-1607 кГц, а в ультракоротком диапазоне - 64-108 Мгц.
Все более широкое распространение для подслушивания применяют сканирующие приемники, рассмотренные выше.
Для выделения, приема, усиления опасных электрических сигналов, распространяющихся по телефонным, радиотрансляционным и другим линиям, применяются селективные и специальные усилители низкой частоты. Специальные усилители содержат селективные элементы для выделения, например, опасных сигналов из сигналов электропитания, датчики для дистанционного съема сигналов, а также имеют конструкцию, удобную для переноса и автономной работы в различных условиях скрытного подслушивания.
г) Закладные устройства
С целью обеспечения реальной возможностью скрытного подслушивания и существенного повышения его дальности широко применяются закладные устройства (закладки, радиомикрофоны, «жучки», «клопы»). Эти устройства перед подслушиванием скрытно размещаются в помещении злоумышленниками или привлеченными к этому сотрудниками организации, проникающими под различными предлогами в помещение. Такими предлогами могут быть посещения руководства или специалистов посторонними лицами с различными предложениями, участие в совещаниях, уборка, ремонт помещения и технических средств и т. д.
Закладные устройства в силу их большого разнообразия конструкций и оперативного применения создают серьезные угрозы безопасности речевой -информации во время разговоров между людьми практически в любых помещениях, в том числе в салоне автомобиля.
Разнообразие закладных устройств порождает многообразие их вариантов их классификаций. Вариант классификации указан на рис. 3.15.
Рис. 3.15. Классификации закладных устройств
По виду носителя информации от закладных устройств к злоумышленнику их можно разделить на проводные и излучающие закладные устройства. Носителем информации от проводных закладок является электрический ток, который распространяется по электрическим проводам. Проводные закладки, содержащие микрофон для преобразования акустических речевых сигналов в электрические, относятся к акустическим закладным устройствам, а ретранслирующие электрические сигналы с речевой информации, передаваемые по телефонной линии, образуют группу проводных телефонных закладок.
Проводные акустические закладки представляют собой:
- субминиатюрные микрофоны, скрытно установленные в бытовых радио- и электроприборах, в предметах мебели и интерьера и соединенные тонким проводом с микрофонным усилителем или диктофоном, размещаемыми в других помещениях;
- миниатюрные устройства, содержащие микрофон, усилитель и формирователь сигнала, передаваемого, как правило, по телефонным линиям и цепям электропитания.
Проводные акустические закладки в виде микрофона имеют высокую чувствительность и помехоустойчивость, но наличие провода демаскирует закладки и усложняет их установку, в особенности в условиях дефицита времени. Поэтому такие закладки могут устанавливаться во время ремонта или в помещениях с возможностью достаточно простого и длительного доступа в них людей, например, в номера гостиниц. Закладки, использующие цепи электропитания, размещаются, в основном, в местах подключения проводов электропитания к выключателям и сетевым розеткам.
Излучающие закладные устройства лишены недостатков проводных, но у них проявляется другой демаскирующий признак — излучения в радио- и оптическом диапазонах. В зависимости от вида первичного сигнала радиозакладки можно разделить на аппаратные и акустические. Аппаратные закладки устанавливаются в телефонных аппаратах, ПЭВМ и других радиоэлектронных средствах. Входными сигналами для них являются электрические сигналы, несущие речевую информацию (в телефонных аппаратах), или информационные последовательности, циркулирующие в ПЭВМ при обработке конфиденциальной информации. В таких закладках отсутствует микрофон, что упрощает их конструкцию, и имеется возможность использования для электропитания энергию средства, в котором установлена закладка.
Наиболее широко применяются акустические радиозакладки, позволяющие сравнительно просто и скрытно устанавливать их в различных местах помещения. Простейшая акустическая закладка содержит (см. рис. 3.16) следующие основные устройства: микрофон, микрофонный усилитель, генератор несущей частоты, модулятор, усилитель мощности, антенну.
Микрофон преобразует акустический сигнал с информацией в электрический, который усиливается до уровня входа модулятора. В модуляторе производится модуляция колебания несущей частоты, т. е. производится перезапись информации на высокочастотный сигнал. Для обеспечения необходимой мощности излучения модулированный сигнал усиливается в усилителе мощности. Излучение радиосигнала в виде электромагнитной волны осуществляется антенной, как правило, в виде отрезка провода.
Рис. 3.16. Схема акустической закладки
В целях сокращения веса, габаритов и энергопотребления в радиозакладке указанные функции технически реализуются минимально возможным количеством активных и пассивных элементов. Простейшие закладки содержат всего один транзистор.
По диапазону частот закладные устройства отличаются большим разнообразием. На ранних этапах использования закладных устройств частоты излучений их привязывали к частотам бытовых радиоприемников в УКВ-диапазоне. При массовом появлении у населения бытовых радиоприемников увеличилась опасность случайного перехвата сигналов радиозакладок посторонними лицами. Поэтому большинство типов современных закладок имеют более высокие частоты в УВЧ-диапазоне.
Для более 96% радиозакладок рабочие частоты сосредоточены в интервале 88-501 МГц, причем с частотами 92.5-169.1 МГц выпускаются 42% радиомикрофонов, а с частотами 373.4-475.5 МГц - 52% радиомикрофонов [50]. Наиболее интенсивно используется диапазон частот 449.7-475.5 МГц, в котором сосредоточены рабочие частоты 36% образцов.
Продолжается тенденция дальнейшего повышения частот, в том числе с переходом в ГГц диапазон. С увеличением частоты передатчика уменьшается уровень помех, что позволяет снизить мощность передатчика и, соответственно, его габариты, а также длину антенны.
В интересах повышения скрытности для излучающих закладных устройств осваивается ИК-диапазон. Однако в силу большего по сравнению с радиоволнами затухания ИК-лучей в среде распространения и необходимостью прямой видимости между излучателем ИК-закладки и фотоприемником злоумышленника применение подобных закладных устройств ограничено.
Кроме диапазона частот на условия передачи закладкой информации влияет стабильность частоты ее передатчика. Для простых схемных решений передатчика закладки значения его частоты изменяются в значительных пределах в зависимости от температуры и питающего напряжения. Величина дрейфа рабочей частоты радиозакладок может достигать единиц МГц. В результате этого радиоприемник, настроенный на частоту радиозакладки, через некоторое время «теряет» радиосигнал. Это обстоятельство имеет важное значение для обеспечения автоматического приема сигналов радиозакладок, например, в случае, когда подслушивание производится аппаратурой в автомобиле при отсутствии в нем оператора. Частоты около половины предлагаемых на рынке радиозакладок стабилизируются.
Повышение стабильности частоты излучения обеспечивается путем:
применения в колебательном контуре генератора элементов со слабой температурной зависимостью, температурной компенсации, стабилизации питающих напряжений, включения в колебательный контур элементов, стабилизирующих его частоту.
В закладных устройствах «мягкая» стабилизация со стабильностью частоты 10-3-10-4 достигается схемотехническими решениями (стабилизацией напряжения, температурной компенсацией и др.). Для большей стабильности частоты передатчика («жесткой», со стабильностью 10-5-10-6) в качестве стабилизирующих элементов используются пластины кристалла кварца. Частота стабилизации зависит от вида среза кристалла кварца, толщины и размеров его пластины, включенной в цепь генератора. Стабилизация частоты излучения радиозакладки усложняет ее схему и увеличивает габариты передатчика. но существенно улучшает удобство работы.
Другой проблемой, возникающей при применении закладных устройств, является обеспечение их энергией в течение времени подслушивания. Возможности современной микроэлектроники по созданию миниатюрных закладных устройств ограничиваются, в основном, масса-габаритными характеристиками автономных источников питания (химических элементов). Микрогабаритные источники тока, широко применяемые в электронных часах, обеспечивают работу закладных устройств в течение короткого времени (десятков часов при минимально-допустимой мощности излучений для дальности до сотни метров). Для закладных устройств используются гальванические элементы с высокой удельной энергией — ртутно-цинковые, серебряные и литиевые. Усредненные характеристики этих элементов приведены в табл. 3.9 [73].
Таблица 3.9.
Тип элемента | Рабочее напряжение, В | Максимальная емкость, Ач/кт | Плотность энергии, Втч/кг | Срок хранения. лет |
Ртутный | 1.2-1.25 | 185 | 120 | 3 |
Серебряный | 1.5 | 285 | 130 | 2.5 |
Литиевым | 3 | 750 | 350 | 5 |
Емкость гальванического элемента пропорциональна его габаритам и весу. Габариты цилиндрических и кнопочных элементов, используемых в малогабаритных устройствах, указаны в табл. 3.10, а плоских - в табл. 3.11
[73].
Таблица 3.10.
-
Обозначение габаритов
Диаметр, мм
Высота, мм
Цилиндрические
ААА
8.2
40.2
АА
10.5
44.5
А
14.5
50.5
Кнопочные
М5
7.86
3.56
М8
11.7
3.3
М15
11.7
5.34
М20
15.7
6.1
МЗО
16
11.1
М40
16
16.8
Таблица 3.
-
Обозначение габаритов
Длина, мм
Высота, мм
Ширина, мм
F15
14.2
3.02
14
F20
23.9
3.02
14
F25
22.6
5.85
22.6
F30
31.8
3.3
21.4
F40
31.8
5.35
21.4
Наиболее распространены ртутно-цинковые элементы. В них в качестве анода используются оксид ртути (HgO), катода - смесь порошка ртути и цинка или сплава индия с титаном, а электролит представляет собой 40% щелочь. Для малогабаритных приборов отечественной электропромышленностью созданы элементы РЦ-31С, РЦ-ЗЗС и РЦ-55УС с удельной энергией 600-700 кВт/м3. Электрические параметры ряда отечественных ртутно-цинковых элементов и батарей, предназначенных для питания малогабаритных радиоэлектронных устройств, указаны в табл. 3.12.
Таблица 3.12.
-
Обозначение
Напряжение, В
Емкость. Ач
Ток разряда. мА
Габариты,
мм
Масса, Г
РЦ-31
1.25
0.07
1
11.5х3.6
1.3
РЦ-53
1.25
0.25
10
15.6х6.3
4.6
РЦ-55
1.25
0.5
10
15.6х12.5
9.5
РЦ-57
1.25
1.0
20
16х17
15
РЦ-59
1.25
3.0
60
16х50
44
РЦ-85
1.22
2.5
50
30.1х14
39.5
РЦ-93
1.25
13.0
300
31х60
170
Продолжение табл. 3.12.
-
Обозначение
Напряжение. В
Емкость. Ач
Ток разряда. мА
Габариты.
мм
Масса, Г
2РЦ-55с
2.68
0.45
10
16.2х27
20
ЗРЦ-55с
4.02
0.45
10
16.2х40
30
4РЦ-55с
5.36
0.45
10
16.2х53
40
5РЦ-55с
6.7
0.45
10
16.2х66
50
6РЦ-63
7.2
0.6
10
23х48
71
Среди гальванических источников тока зарубежного производства широкое применение находят элементы фирм Duracell, Varta, Kodak. Технические характеристики малогабаритных гальванических элементов фирмы Duracell приведены в табл. 3.13 [74].
Таблица 3.13.
-
Тип
Напряжение. В
Номинальная емкость. Ач
Диаметр.
мм
Высота.
мм
D392
1.5
0.05
7.9
3.6
D391
1.5
0.05
11.6
2 1
D389, D390
1.5
0.08
11.6
3.1
D386
1.5
0.12
11.6
4.2
D357H/10L14
1.5
0.17
11.6
5.4
LR54
1.5
0.04
11.6
3.0
LR43
1.5
0.08
11.6
4.2
LR44
1.5
0.10
11.6
5.4
DL2016
3.0
0.07
20.0
1.6
DL2032
3.0
0.18
20.0
3.2
Увеличение времени эксплуатации и повышение скрытности работы закладного устройства достигается путем автоматического подключения к источнику питания наиболее энергоемкого узла радиозакладки - передатчика. В первом варианте в закладке устанавливается специальное устройство -акустический автомат (акустоавтомат), подключающее к источнику питания передатчик при появлении на мембране микрофона акустического сигнала. В тишине в ночное время во включенном состоянии (в «дежурном» режиме) находится лишь микрофонный усилитель с исполнительными электронным реле. При возникновении в помещении акустических сигналов от разговаривающих людей реле по сигналу от микрофонного усилителя подключает передатчик и закладное устройство излучает радиосигналы с информацией. После прекращения разговора исходное состояние реле восстанавливается и излучение прекращается.
Во втором варианте закладные устройства дистанционно включаются на излучение по внешнему радиосигналу, подаваемому злоумышленником. Эти закладные устройства обеспечивают повышенную скрытность и более длительное время работы. Однако для их эффективного применения надо иметь дополнительный канал утечки сведений о времени циркулирования конфиденциальной информации в помещении, где установлено закладное устройство. Например, надо достаточно точно знать время, когда будут вестись в помещении конфиденциальные разговоры. Так как дистанционно управляемые закладки содержат устройство для приема управляющих радиосигналов, то они наиболее сложные и, следовательно, дорогие.
Рациональным решением задачи обеспечения закладных устройств электропитанием является подключение их к устройствам питания радио и электроприборов, в которые устанавливаются закладки. Широко применяются подобные закладные устройства в телефонных аппаратах, закамуфлированные под их элементы (конденсаторы, телефонные капсюли и др.), в тройниках для подключения нескольких приборов к одной розетке электросети. По оценке, приведенной в [50], в 75% закладных устройств используется автономное (батарейное) питание, 8% - питание от сети и 17% - питание от телефонной линии.
Следует отметить, что применяются, пока редко, также пассивные закладки, — без собственных источников электропитания. Для активизации они облучаются внешним электромагнитным полем на частоте, соответствующей резонансной частоте колебательного контура закладки, образованного элементами ее конструкции. Модуляция радиосигнала производится в результате воздействия акустической волны на частотозадающие элементы конструкции закладки.
Жесткие требования к габаритам, массе, энергопотреблению закладных устройств ограничивают мощность излучения их передатчиков. Наиболее часто (более 80%) применяются радиомикрофоны, мощность излучения которых находится в интервале 3-11 мВт, закладки с более высокой мощностью - до 22 мВт составляют менее 10% [50]. Встречаются закладки и большей мощности излучения (до 200 мВт и более), однако их доля крайне незначительна. Малая мощность излучения передатчиков радиозакладок определяет относительно небольшую дальность приема их сигналов. Около 75% образцов обеспечивает функционирование канала на расстояниях 50-350м, 16%- на расстояниях 460-600 м, 7% - на расстояниях 740-800м и только около 2% - на расстояние до 1000 и более метров.
В общем случае технические данные закладных устройств находятся в следующих пределах [29]:
- частотный диапазон - 27-900 МГц;
- мощность - 0.2-500 мВт;
- дальность - 10-1500 м;
- время непрерывной работы — от нескольких часов до нескольких лет;
- габариты - 1-8 дм3;
- вес - 5-350 г.
Основная проблема оперативного применения закладных устройств заключается в рациональном размещении их в помещении или в радиоэлектронном средстве. Рациональность достигается при обеспечении:
- поступления на вход закладки сигнала с уровнем, необходимым для качественной передачи звуковой или иной информации;
- скрытности размещения и работы закладки, по крайней мере, в течение времени подслушивания интересующей злоумышленника информации.
Эффективность выполнения этих условий зависит от удаленности места установки закладки от источников звука и наличия между ними звукопоглощающих и звукоизолирующих экранов, от чувствительности микрофона, размеров и параметров акустики, прежде всего, от времени реверберации помещения и времени, которым располагает злоумышленник для установки. Чувствительность современных малогабаритных микрофонов обеспечивает достаточно качественный прием акустических сигналов на удалении до 10-15 м при отсутствии экранов на пути распространения акустической волны.
Установка закладных устройств возможна с заходом злоумышленника в помещение, где производится их размещение, или без захода. Первый вариант позволяет более рационально разместить закладку как с точки зрения энергетики, так и скрытности, но связана с повышенным риском для злоумышленника. Поэтому в случаях, когда создаются предпосылки для дистанционной (беззаходовой) установки закладки, их забрасывают в помещение или ими выстреливают из пневматического ружья или лука. Например, комплект PS фирмы Sipe Electronic состоит из специального бесшумного пневматического пистолета с прицельным расстоянием 25 м и радиозакладкой, укрепленной на стреле. Стрела после выстрела надежно прикрепляется с помощью присоски к поверхностям из металла, дерева, пластмассы, бетона и других гладких строительных и облицовочных материалов. Микрофон обеспечивает съем речевой информации с расстояния до 10 м, а передатчик - ее передачу на расстояние до 100 м.
Несмотря на сравнительно малые размеры и вес закладных устройств они могут быть обнаружены при тщательном визуальном осмотре помещения. С целью продления времени их оперативного использования, а также приближения микрофонов к источнику звука закладные устройства камуфлируют под предметы, не вызывающие подозрение у окружающих людей. Трудно назвать предметы личного пользования, средства оргтехники, средства бытовой радиоэлектроники, в которые не устанавливались бы различные устройства для подслушивания. Некоторые из таких средств подслушивания приведены в табл. 3.14.
Таблица 3.14.
Наименование | Тип. фирма | Характеристики |
Радиопередатчики в: | ELECTRONIC: | |
стакане | РК535 | 65х100 мм, 210г. солнечные батареи |
пепельнице | PK565-S | 90х45 Мм, 480 г. солнечные батареи |
подсвечнике | РК580 | 100х175 мм. 650 г. солнечные батареи |
калькуляторе | PK620-S | 135х100 мм. радиус действия 150-200 м |
розетке | РК550 | 140х60х40 мм. 380 г. дальность до 600 м |
настольной зажигалке | РК575 | 80х32х52 мм. 150г. время работы до 80 ч |
гвозде | РК520 | 35х6 мм. 96 г. 36 часов, до 200 м |
Продолжение табл. 3.14
Наименование | Тип. фирма | Характеристики |
шариковой ручке | РК585 | 135х11 мм. 25 г. 6 часов, до 300 м |
часах | PK1025-S | 88s 108 или 130s 150 МГц. 6 часов. |
ремне | PK850-S | 139 МГц, до 800м. |
Радиопередатчик в запонках. булавке для галстука | STG4140,STG | 15-150 МГц, мощность 5 мВт. |
Раднопередатч 11 к в видеокассете | UM 007.3, SMIRAB ELECTRONIC | 136-146 МГц. до 300м, время непрерывной работы 3 суток |
Магнитофон в книге | РК660. ELECTRONIC | 200х250х65 мм. 1200г. время записи 2х90 мин. |
Магнитофон в пачке сигарет | РК1985, ELECTRONIC | 55х87х21 мм, 160г. время работы 11ч. |
д) Средства лазерного подслушивания
Лазерное подслушивание является сравнительно новым способом подслушивания (первые рабочие образцы появились в 60-е годы), и предназначено для съема акустической информации с плоских вибрирующих под действием акустических волн поверхностей. К таким поверхностям относятся, прежде всего, стекла закрытых окон.
Система лазерного подслушивания состоит из лазера в инфракрасном диапазоне и оптического приемника. Лазерный луч с помощью оптического прицела направляется на окно помещения, в котором ведутся интересующие злоумышленника разговоры. При отражении лазерного луча от вибрирующей поверхности происходит модуляция акустическим сигналом угла отраженного луча лазера или его фазы.
В варианте угловой модуляции вектор отраженного от колеблющейся поверхности стекла меняется в соответствии с амплитудой акустической волны. Отраженный луч принимается оптическим приемником, размещаемым в соответствии с углом отражения. Положение светочувствительного элемента (фотокатода) оптического приемника юстируется таким образом, чтобы пятно отраженного лазерного луча при отсутствии колебаний стекла освещало половину экрана. В этом случае изменения направления отраженного луча при колебаниях стекла вызывают соответствующие изменения площади пятна света на фотокатоде оптического приемника и появление в светочувствительном слое модулированного по амплитуде электрического сигнала. Сигнал после усиления прослушивается и записывается на магнитную ленту. На практике юстировка производится по субъективной оценке оператором разборчивости речи.
Второй вариант построения системы лазерного подслушивания предусматривает реализацию в оптическом приемнике фазовой демодуляции путем сравнения фаз облучающего и отраженного лучей. С этой целью исходный луч с помощью полупрозрачного зеркала расщепляется на два луча. Одним из них облучается стекло, другой направляется к приемнику в качестве опорного. В точке приема в результате интерференции опорного и отраженного лучей на поверхности светочувствительного слоя в нем возникают электрические заряды, величина которого соответствует разности фаз лучей. Этот вариант обеспечивает более высокую чувствительность системы подслушивания, но сложнее в реализации.
Примером системы лазерного подслушивания является система РК-1035 фирмы РК Electronic. Система состоит из лазерных передатчика и приемника, магнитофона для записи перехваченной информации. Передатчик и приемник системы устанавливаются на треноге. Лазерный передатчик имеет размеры 65х250 мм, вес 1.6 кг, мощность - 5 мВт, длина волны излучения- 850 мкм. Лазерный приемник имеет размеры 65х260 мм, вес 1.5кг. Электропитание - от сети и автономное.
Данные о возможностях систем лазерного подслушивания противоречивые. В рекламных материалах дальность указывается для разных систем от сотен метров до км. Однако без ссылки на уровень внешних акустических шумов эти величины можно рассматривать как потенциально достижимые в идеальных условиях. В городских условиях, когда принимаются дополнительные меры по звукоизоляции помещений от шума улицы, дальности будут существенно меньшими. Следует также иметь ввиду сложность практической установки излучателя и приемника, при которых обеспечивается попадание зеркально отраженного от стекла невидимого лазерного луча на фотоприемник. Уровни же диффузно отраженных от стекла лучей столь малы, что их не удается принять на фоне городских акустических шумов. Кроме того, следует отметить, что соотношение между стоимостью системам лазерного подслушивания и затрат на эффективную защиту от них не в пользу рассматриваемого метода добывания информации.
Следовательно, системы лазерного подслушивания, несмотря на их достаточно высокие потенциальные возможности, имеют ограниченное реальное применение, в особенности разведкой коммерческих структур.
е) Средства высокочастотного навязывания
Добывание речевой информации путем высокочастотного навязывания достигается в результате дистанционного воздействия высокочастотным электромагнитным полем или электрическими сигналами на элементы, способные модулировать их информационные параметры первичными электрическими или акустическими сигналами с речевой информацией. В качестве таких элементов могут использоваться различные полости с электропроводной поверхностью, представляющие собой высокочастотные контура с распределенными параметрами и объем которых меняется под действием акустической волны. Если частота такого контура совпадает с частотой высокочастотного навязывания, а поверхность полости находится под воздействием акустической информацией, то эквивалентный контур пере излучает и модулирует внешнее поле.
Более часто в качестве модулирующего применяется нелинейный элемент, в том числе в схеме телефонного аппарата. В этом случае высокочастотное навязывание обеспечивается подведением к телефонному аппарату высокочастотного гармонического сигнала путем подключения к телефонному кабелю высокочастотного генератора. В результате взаимодействия высокочастотного колебания с речевыми сигналами на нелинейных элементах телефонного аппарата происходит модуляция высокочастотного колебания речевым низкочастотным сигналом. Модулированные высокочастотные сигналы могут быть перехвачены приемником злоумышленника.
3.4. Способы и средства добывания информации о радиоактивных веществах
Добыванием информации о радиоактивных веществах занимается радиационная разведка. Демаскирующими признаками радиоактивных веществ являются α, β, и γ-излучения. Альфа-излучение состоит из ядер атомов гелия, движущихся со скоростью 14000-20000 км/с. Бета-излучение представляет собой поток электронов, скорости которых близки к скорости света. Гамма-излучение является электромагнитным излучением с длиной волны менее 0.01нм. Заряд и кинетическую энергию а и Р-частиц определяют по их отклонению в электрическом и магнитном полях известной напряженности. Энергию и длину волны 7-излучения рассчитывают по энергии электронов, освобождаемых из различных веществ под действием этого излучения.
Для обнаружения радиоактивных излучений используются специальные дозиметрические приборы. Структура типового прибора радиационной разведки приведена на рис. 3.17.
Рис. 3.17. Структурная схема прибора радиационной разведки
Детектор преобразует энергию радиоактивного излучения в электрические сигналы, которые после усиления поступают на стрелочный или цифровой индикатор. В качестве детектора используются ионизационные камеры, газоразрядные и сцинтилляционные счетчики, кристаллы полупроводника, фотопленка.
Ионизационные камеры (Вильсона, пузырьковые, искровые) представляют собой сосуды цилиндрической или прямоугольной формы, заполненные газом с пересыщенным паром (в камере Вильсона), жидким водородом (в пузырьковой камере) и инертным газом (в искровой камере). В искровой камере имеются, кроме того, плоскопараллельные близко расположенные друг к другу пластины, на которые подается высокое напряжение, чуть ниже пробойного. Когда через камеру Вильсона и пузырьковую камеру пролетает электрически заряженная частица, на возникающих на ее пути ионах конденсируются маленькие капельки жидкости, видимые при боковом освещении. При пролете быстрой частицы через искровую камеру вдоль ее траектории между пластинами проскакивают искры, создавая огненный трек.
В малогабаритных приборах радиационной разведки применяются в основном газоразрядные счетчики (счетчики Гейгера-Мюллера). Газоразрядные счетчики представляют собой герметичную стеклянную трубку, заполненную смесью газовой смесью (аргона и воздуха, аргона и паров и др.) под давлением 0.1 атмосферы. Внутренняя поверхность трубки металлизирована. Внутри трубки протянута металлическая нить, на которую подается высокое положительное напряжение 1000-1500 В постоянного тока, а к металлизированной поверхности счетчика - отрицательное напряжение. Когда в газоразрядную трубку попадает ионизирующая частица, происходит лавинообразный процесс образования ионов, между электродами возникает короткий импульс тока, который подается на вход усилителя. В результате вторичной ионизации обеспечивается высокая чувствительность детектора. В простейшем варианте импульсы тока усиливаются и регистрируются в виде звуковых щелчков, в более совершенных дозиметрических приборов частота импульсов преобразуется в значение уровня излучения, отображаемое с помощью стрелочных или цифровых индикаторов.
Счетчики Гейгера-Мюллера для регистрации α-излучения имеют очень тонкое (0.002-0.003 мм) слюдяное (пленочное) окно, через которое частицы без существенного поглощения попадают в трубку. Для регистрации β-излучения окно трубки делают из алюминиевой фольги толщиной 0.1-0.2 мм, которая поглощает ос-частицы. Трубки для регистрации γ-излучения закрыты слоем алюминия толщиной 1 мм, поглощающей Р-излучение.
Сцинтилляционные детекторы представляют собой экран (пластину) из стекла, покрытый флюоресцирующим веществом (сульфидом цинка, антраценом или другими веществами, преобразующими кинетическую энергию радиоактивных частиц в энергию световой вспышки). Путем размещения за экраном фотоумножителя вспышки света могут преобразовываться в электрические сигналы с последующим измерением их интенсивности электронным счетчиком. Преимущество сцинтилляционного детектора состоит в том, что он может раздельно считать частицы, поступающие через очень короткие промежутки времени (10-8-10-9 с вместо 10-5-10-6 с у счетчиков Гейгера-Мюллера). Дальнейшим развитием сцинтилляционного счетчика является люминисцентная камера, которая не только считает частицы в течение очень короткого времени (10-13-10-14 с), но и с помощью соответствующего электронно-оптического устройства регистрирует их траектории.
Широкое распространение получили кристаллические полупроводниковые детекторы, основу которых составляют полупроводниковый кристалл кремния или германия с различными добавками. Электропроводность кристалла изменяется под действием ионизирующего излучения.
В качестве фотодетекторов применяют также рентгеновскую фотопленку, по степени почернения которой за определенное время судят об уровне излучения.
Приборы для обнаружения и измерения радиоактивных излучений в зависимости от назначения делятся на индикаторы радиоактивности, радиометры и дозиметры. По способу индикации интенсивности излучения - на стрелочные и цифровые.
Индикаторы излучений информируют оператора световой или звуковой индикацией о наличии в зоне поиска радиоактивных веществ, радиометры обнаруживают и измеряют уровень радиоактивного заражения среды, а дозиметры измеряют дозы излучений.
Доза излучения оценивается величиной экспозиционной дозы, определяемой по эффекту ионизации единицы объема сухого атмосферного воздуха при нормальных условиях. В качестве единицы измерения в системе СИ принята мера в кулон/кг (Кл/кг). Применяется еще несистемная единица измерения - рентген (Р) и ее доли (миллирентген и микрорентген). Соотношение между этими единицами: 1Р=2.58 •10-4 Кл/кг.
Величина экспозиционной дозы в единицу времени называется мощностью экспозиционной дозы называется (МЭД). Мощность излучения космоса и радионуклидов земли составляет в среднем 5-30 мкР/ч.
Энергия излучений оценивается также в электрон-вольтах (эВ) и см пробега. Один эВ равен кинетической энергии, получаемой электроном под действием разности потенциалов 1 В. Энергия альфа-частиц, излучаемых различными естественными радиоактивными элементами, составляет 4-9 МэВ (1 МэВ = 106 эВ), что обеспечивает их пробег в атмосфере воздуха при нормальных условиях 2.5-8.6 см.
Энергия, поглощаемая в единице массы тела, называется поглощенной дозой излучения и измеряется в греях (Гр) и радах, причем 1 Гр=100 рад.
Влияние излучения на биологические объекты оценивается биологической зоной излучения, которая равна поглощенной зоне, умноженной на коэффициент, характеризующий вид излучения (для α-излучения коэффициент равен приблизительно 20, для β- и γ-излучений - около 1). Величина поглощения энергии излучения в единице биологической массы (ткани) называется основной дозиметрической величиной (дозой). Единица измерения дозы в системе СИ - зиверт (Зв) и несистемная единица измерения - бэр, причем 1бэр=1003в.
На рынке имеются разнообразные радиометры, в том числе бытовые «Белка», «Эксперт», «Сосна» и др. Разнообразные профессиональные приборы выпускает Обнинский приборный завод «Сигнал». Например, измеритель мощности дозы гамма-излучения ИМД-2 применяется в стационарных условиях, на летательных аппаратах, подвижных объектах и для пешей разведки, Индикация уровня производится с помощью светящегося сектора на шкале прибора. Он имеет следующие характеристики:
- диапазон измерения МЭД ...................... 0 мкР/ч-1000 Р/ч;
- погрешности измерения ............................... 30 %;
- диапазон температур окружающей среды, °С ...-50...+50;
- вес прибора, кг .......................................... 1.6 кг;
- габариты, мм ......................................... 198х180х82.
Малогабаритные дозиметры (ДРС-01, ДКС-04, ДЭГ-8, ДРГ-01Т1, ДРГ-05М и др.) постоянно применяются людьми, имеющие дело с радиоактивными веществами, для измерения принятой ими дозы в течение определенного времени работы, например, месяца. Пороговое значение дозы за год не должно превышать 5 бэр.