Лекции сайта «РазныеРазности»
Вид материала | Лекции |
- Лекции сайта «РазныеРазности», 14661.74kb.
- Лекции сайта «РазныеРазности», 3039.99kb.
- Лекции сайта «РазныеРазности», 3031.54kb.
- Лекции сайта «РазныеРазности», 6860.77kb.
- Лекции сайта «РазныеРазности», 29870.4kb.
- Лекции Общие сведения о порядке разработки сайтов, 21.86kb.
- Анализ требований к проекту сайта (см табл. 9) 18 Согласование выработанной идеи проекта, 590.25kb.
- Название лекции: 2011. 08. 16. Йога Триада. Лекция, 430.35kb.
- Название лекции: 2011. 05. 17. Йога Триада. Лекция, 335.26kb.
- Название лекции, 2025.12kb.
Понятию «сложности» применительно к-высказываниям можно придать точный характер на основании спецификаций машины Тьюринга, как мы это уже делали в(в конце комментария к возражению). Для большей конкретности мы можем воспользоваться явными формулировками, представленными в НРК (глава 2), как вкратце показано в приложении(а это уже здесь, с. 191). Итак, степенью сложности-высказывания, утверждающего незавершаемость вычисления машины
Тьюринга, мы будем полагать числознаков в двоичном представлении большего из пары чисел
Причина введения в данное рассуждение числа— вместо того чтобы удовлетвориться какой-нибудь огромной величиной в лице одного лишь коэффициента , — заключается в необходимости учета следующей возможности. Предположим, что внутри нашего ансамбля, благодаря редчайшей случайности, появляется «безумный» робот, который формулирует какое-нибудь абсолютно нелепое-утверждение, ничего не сообщая о нем остальным роботам, причем нелепость этого утверждения настолько велика, что ни одному из роботов никогда не придет в «голову» — просто на всякий случай — сформулировать его опровержение. В отсутствие числатакое-утверждение автоматически попадет, в соответствии с нашими критериями, в группу «безошибочных». Введение же достаточно большоготакую ситуацию предотвратит — при условии, разумеется, что подобное «безумие» возникает среди роботов не часто. (Вполне возможно, что я упустил из виду еще что-нибудь, и необходимо будет позаботиться о каких-то дополнительных мерах предосторожности. Представляется разумным, однако, по крайней мере, на данный момент, ограничиться критериями, предложенными выше.)
Учитывая, что все-утверждения, согласно исходному допущению, следует полагать «неопровержимыми» заявлениями нашего робота (основанными на, по всей видимости, присущих роботу четких логических принципах и посему не содержащими ничего такого, в чем робот испытывает хотя бы малейшее сомнение), то вполне разумным представляется предположение, что вышеописанным образом действительно можно устранить редкие промахи в рассуждениях робота, причем функции ич. , вряд ли окажутся чем-то из ряда вон выходящим. Предположив, что все так и есть, мы опять получаем не что иное, как вычислительную систему — систему познаваемую (в том смысле, что познаваемыми являются лежащие в основе системы правила) при условии познаваемости исходного набора механизмовопределяющего поведение нашего робота. Эта вычислительная система дает нам новую формальную систему (также познаваемую), теоремами которой являются те самые безошибочные-утверждения (либо утверждения, выводимые из них посредством простых логических операций исчисления предикатов).
Вообще говоря, для нас с вами важно не столько то, что эти утверждения действительно безошибочны, сколько то, что в их безошибочности убеждены сами роботы (для приверженцев точки зренияособо оговоримся, что концепцию роботовой «убежденности» следует понимать в чисто операционном смысле моделирования роботом этой самой убежденности, см.).
Если точнее, то нам требуется, чтобы робот был готов поверить в то, что упомянутые-утверждения действительно безошибочны, исходя из допущения, что именно набором механизмови определяется его поведение (гипотеза). До сих пор, в данном разделе, мы занимались исключительно устранением ошибок в-утверждениях робота. Однако, на самом деле, ввиду представленного в_ фундаментального противоречия, нас интересует устранение ошибок в его-утверждениях, т. е. в тех п -высказываниях, что по неопровержимой убежденности робота следуют из гипотезы. Поскольку принятие роботами формальной системыв любом случае обусловлено гипотезой, мы вполне можем предложить им для обдумывания и более обширную формальную систему, определяемую аналогично формальной системеизПод в данном случае понимается формальная система, построенная из-утверждений, «безошибочность» которых установлена в соответствии с вышеописанными критериямиВ частности, утверждение «утверждениеистинно» считается здесь безошибочным-утверждением. Те же рассуждения, что и в приводят нас к выводу, что роботы не смогут принять допущение, что они построены в соответствии с набором механизмов(вкупе с проверочными критериями), независимо от того, какие именно вычислительные правиламы им предложим.
Достаточно ли этих соображений для того, чтобы окончательно удостовериться в наличии противоречия? У читателя, возможно, осталось некое тревожное ощущение — кто знает, вдруг сквозь тщательно расставленные сети, невзирая на все наши старания, проскользнули какие-нибудь ошибочные или-утверждения? В конце концов, приведенные выше рассуждения будут иметь смысл лишь в том случае, если нам удастся исключить абсолютно все ошибочные-утверждения (или-утверждения) в отношении-высказываний. Окончательно и бесповоротно удостовериться в истинности утверждениянам (и роботам) поможет обоснованность формальной системы ' (обусловленная гипотезой ). Эта самая обоснованность подразумевает, что система ни в коем случае не может содержать таких-утверждений, которые являются — или всего лишь предполагаются — ошибочными. Невзирая на все предпринятые меры предосторожности, полной уверенности у нас (да и у роботов, полагаю) все-таки нет — хотя бы по той простой причине, что количество возможных утверждений подобного рода бесконечно.
3.20. Возможность ограничиться конечным числом-утверждений
Есть, впрочем, возможность именно эту конкретную проблему разрешить и сузить область рассмотрения до конечного множества различных-утверждений. Само доказательство несколько громоздко, однако основная идея заключается в том, что нам необходимо рассматривать только те высказывания, спецификации которых являются «краткими» в некотором вполне определенном смысле. Конкретная степень необходимой «краткости» зависит от того, насколько сложное описание системы механизмовнам необходимо. Чем сложнее описаниетем «длиннее» допускаемые к рассмотрению высказывания. «Максимальная длина» задается неким числом с, которое можно определить из степени сложности правил, определяющих формальную системуСмысл в том, что при переходе к гёделевскому предположению для этой формальной системы — которую нам, вообще говоря, придется слегка модифицировать — мы получим утверждение, сложность которого будет лишь немногим выше, нежели сложность такой модифицированной системы. Таким образом, проявив должную осторожность при выборе числа с, мы можем добиться того, что и гёделевское предположение будет также «кратким». Это позволит нам получить требуемое противоречие, не выходя за пределы конечного множества «кратких»-высказываний.
Подробнее о том, как это осуществить на практике, мы поговорим в оставшейся части настоящего раздела. Тем из читателей, кого такие подробности не занимают (уверен, таких наберется немало), я порекомендую просто-напросто пропустить весь этот материал.
Нам понадобится несколько модифицировать формальную системуприведя ее к виду— для краткости я буду обозначать ее просто как(отброшенные обозначения в данной ситуации несущественны и лишь добавляют путаницы и громоздкости). Формальная системаопределяется следующим образом: при построении этой системы допускается принимать в качестве «безошибочных» только те-утверждения, степень сложности которых (задаваемая описанным выше числом) меньше с, где с есть некоторое должным образом выбранное число, подробнее о котором я расскажу чуть ниже. Для «безошибочных»-утверждений, удовлетворяющих неравенству, я буду использовать обозначение «краткие утверждения». Как и прежде, множество действительных теорем формальной системыбудет включать в себя не только-утверждения, но также и утверждения, получаемые из-утверждений посредством стандартных логических операций (позаимствованных, скажем, из исчисления предикатов). Хотя количество теорем системыбесконечно, все они выводятся с помощью обыкновенных логических операций из конечного множества-утверждений. Далее, поскольку мы ограничиваем рассмотрение конечным множеством, мы вполне можем допустить, что функциипостоянны (и принимают, скажем, наибольшие значения на конечном интервале). Таким образом, формальная системазадается лишь четырьмя постоянными с,и общей системой механизмовопределяющих поведение робота.
Отметим существенный для наших рассуждений момент: гёделевская процедура строго фиксирована и не нуждается в увеличении сложности выше некоторого определенного предела. Гёделевским предположениемдля формальной системы является-высказывание, степень сложности которого должна лишь на сравнительно малую величину превышать степень сложности самой системыпричем эту величину можно определить точно.
Конкретности ради я позволю себе некоторое нарушение системы обозначений и буду вкладывать в записьнекий особый смысл, который может и не совпасть в точности с определением, данным вВ формальной системенас интересует лишь ее способность доказывать-высказывания. В силу этой своей способности системадает нам алгебраическую процедуру А, с помощью которой мы можем в точности установить (на основании завершения выполнения А) справедливость тех высказываний, формулировка которых допускается правилами системыА под-высказыванием понимается утверждение вида «действие машины Тьюрингане завершается» — здесь и далее мы будем пользоваться специальным способом маркировки машин Тьюринга, описанным в Приложении А (или в НРК, глава 2). Мы полагаем, что процедура А выполняется над парой чиселкак вТаким образом, собственно вычислениезавершается в том и только в том случае, если в рамках формальной системывозможно установить справедливость того самого-высказывания, которое утверждает, что «действиене завершается». С помощью описанной в процедуры мы получили некое конкретное вычисление (обозначенное там как), а вместе с ним, при условии обоснованности системыи истинное-высказывание, которое системеоказывается «не по зубам». Именно это-высказывание я буду теперь обозначать черезОно существенно эквивалентно (при условии достаточной обширности) действительному утверждению «системанепротиворечива», хотя в некоторых деталях эти два утверждения могут и не совпадать
Пустьесть степень сложности процедуры А (по определению, данному вв конце комментария к возражению) — иными словами, количество знаков в двоичном представлении числа а, гдеТогда, согласно построению, представленному в явном виде в Приложении А, находим, что степень сложности ню утвержденияудовлетворяет неравенству Для нужд настоящего рассуждения мы можем определить степень сложности формальной системыкак равную степени сложности процедурыт. е. числуПриняв такое определение, мы видим, что «излишек» сложности, связанный с переходом отоказывается еще меньше, чем и без того относительно крохотная величина
Далее нам предстоит показать, что еслипри достаточно большомтоОтсюда, соответственно, последует, что и-высказываниедолжно оказаться в пределах досягаемости системыпри условии, что роботы принимаютс-убежденностью. Доказав, что
мы докажем и то, чтобуквой мы обозначили значениеприЕдинственная возможная сложность здесь обусловлена тем обстоятельством, что сама величиназависит от с, хотя и не обязательно очень сильно. Эта зависимостьот с имеет две различных причины. Во-первых, число с являет собой явный предел степени сложности тех-высказываний, которые в определении формальной системыназываются «безошибочными-утверждениями», вторая же причина происходит из того факта, что система явным образом обусловлена выбором чисели можно предположить, что для принятия в качестве «безошибочного»-утверждения большей сложности необходимы какие-то более жесткие критерии.
Относительно первой причины зависимостиот с отметим, что описание действительной величины числа с необходимо задавать в явном виде только однажды (после чего внутри системы достаточно обозначения с). Если при задании величины с используется чисто двоичное представление, то (при больших с) такое описание дает всего-навсего логарифмическую зависимость от с (поскольку количество знаков в двоичном представлении натурального п равно приблизительно). Вообще говоря, учитывая, что число с интересует нас лишь в качестве возможного предела, точное значение которого находить вовсе не обязательно, мы можем поступить гораздо более остроумным образом. Например, числоспоказателями можно задать с помощью s символов или около того, и вовсе нетрудно подыскать примеры, в которых величина задаваемого числа возрастает с ростомеще быстрее. Сгодится любая вычислимая функция от s. Иными словами, для того чтобы задать предел с (при достаточно большом значении с), необходимо всего лишь несколько символов.
Что касается второй причины, т. е. зависимости от с чиселто, в силу вышеизложенных соображений, представляется очевидным, что для задания величин этих чисел (в особенности, их возможных предельных значений) совершенно не требуется, чтобы количество знаков в их двоичном представлении возрастало так же быстро, как с, более чем достаточно будет и, скажем, обыкновенной логарифмической зависимости от с. Следовательно, мы с легкостью можем допустить, что зависимость величиныот с является не более чем грубо логарифмической, а также устроить так, чтобы само число с всегда было больше этой величины.
Согласимся с таким выбором с и будем в дальнейшем вместозаписывать. Итак,есть формальная система, теоремами которой являются все математические высказывания, какие можно вывести из конечного количества утверждений, используя стандартные логические правила (исчисление предикатов). Количество этих -утверждений конечно, поэтому разумным будет предположить, что для гарантии их действительной безошибочности вполне достаточно некоторого набора постоянныхЕсли роботы верят в это с-убежденностью, то они, несомненно,-заключат, что гёделевское предположениетакже истинно на основании гипотезы, поскольку является П1-высказыванием меньшей, нежели с, сложности. Рассуждение для получения утвержденияиз-убежденности в обоснованности формальной системыдостаточно просто (в сущности, я его уже привел), так что с присвоением этому утверждению статусапроблем возникнуть не должно. То есть самотакже должно быть теоремой системы. Это, однако, противоречит убежденности роботов в обоснованности. Таким образом, упомянутая убежденность (при условии справедливости гипотезыи достаточно больших числах) оказывается несовместимой с убежденностью в том, что поведением роботов действительно управляют механизмы— а значит, механизмыповедением роботов управлять не могут.
Как же роботы могут удостовериться в том, что были выбраны достаточно большие числа? Никак. Вместо этого они могут выбрать некоторый набор таких чисел и попробовать допустить, что те достаточно велики, — и прийти в результате к противоречию с исходным предположением, согласно которому их поведение обусловлено набором механизмовДалее они вольны предположить, что достаточным окажется набор из несколько больших чисел, — снова прийти к противоречию и т.д. Вскоре они сообразят, что к противоречию они приходят при любом выборе значений (вообще говоря, здесь нужно учесть, помимо прочего, небольшой технический момент, суть которого состоит в том, что при совершенно уже запредельных значениях значение с также должно будет несколько подрасти — однако это неважно). Таким образом, получая один и тот же результат вне зависимости от значений, роботы — равно как, по всей видимости, и мы — приходят к заключению, что в основе их математических мыслительных процессов не может лежать познаваемая вычислительная процедуракакой бы она ни была.
3.21. Окончателен ли приговор?
Отметим, что к такому же выводу мы придем и в случае принятия нами самых разных возможных мер предосторожности, причем вовсе необязательно подобных тем, что я предлагал выше. Наверняка в предложенную модель можно еще внести множество усовершенствований. Можно, например, предположить, что роботы в результате длительной работы впадают в «старческое слабоумие», их сообщества вырождаются, а стандарты падают, т. е. увеличение числа Т выше определенного значения на деле увеличивает и вероятность ошибки в-утверждениях. С другой стороны, если слишком большим сделатьто возникает риск исключить вообще все-утверждения из-за существующего в сообществе меньшинства «глупых» роботов, разражающихся время от времени произвольными-утверждениями, которые в данном случае не перекроются необходимым количеством-утверждений, формулируемых роботами здравомыслящими. Несомненно, не составит большого труда такой риск полностью исключить, введя еще несколько ограничивающих параметров или, скажем, сформировав группу элитных роботов, силами которых рядовые члены сообщества будут непрерывно тестироваться на предмет адекватности своих интеллектуальных способностей, и потребовав к тому же, чтобы статусприсваивался утверждениям только с одобрения всего сообщества роботов в целом.
Существует и много других возможностей улучшения качества-утверждений или исключения ошибочных утверждений из общего (конечного) их числа. Кого-то, возможно, обеспокоит тот факт, что, несмотря на установление предела с сложности-высказываний, ограничивающего общее количество кандидатов наилистатус до некоторой конечной величины, эта величина окажется все же чрезвычайно огромной (будучи экспоненциально зависимой от с), вследствие чего становится весьма сложно однозначно удостовериться, что исключены все возможные ошибочныеутверждения. В самом деле, никакого ограничения не задается в рамках нашей модели на количество «робото-вычислений», необходимых для получения удовлетворительного'-доказательства какого-либо из-высказываний. Следует ввести четкое правило: чем длиннее в таком доказательстве цепь рассуждений, тем более жесткие критерии применяются при решении вопроса о присвоении ему-статуса. В конце концов, математики-люди реагировали бы именно так. Прежде чем принять в качестве неопровержимого доказательства собрание многочисленных путаных аргументов, мы, естественно, чрезвычайно долго и придирчиво его изучаем. Аналогичные соображения, разумеется, применимы и к тому случаю, когда предложенное доказательство на предмет его соответствия-статусу исследуют роботы.
Вышеприведенные рассуждения в равной степени справедливы и в случае любой дальнейшей модификации условий, имеющих целью устранение ошибок, при условии, что характер такой модификации в некоем широком смысле аналогичен характеру уже предложенных. Для того чтобы эти рассуждения работали, необходимо лишь наличие какого угодно четко сформулированного и вычислимого условия, достаточного для устранения всех ошибочных-утверждений. В результате мы приходим к строгому выводу: никакие познаваемые механизмы, пусть и снабженные какими угодно вычислительными «подпорками», не способны воспроизвести корректное математическое умозаключение человека.
Мы рассматривали-утверждения, которые, оказавшись по той или иной причине ошибочными, в принципе исправимы самими роботами, — пусть даже в каком-то конкретном экземпляре модели роботова сообщества эти утверждения так и остаются неисправленными. Что же еще может означать (в операционном смысле) фраза «в принципе исправимы», как не «исправимы средствами некоторой общей процедуры, подобной тем, что предложены выше»? Ошибка, которую не исправил позднее тот робот, что ее допустил, может быть исправлена каким-либо другим роботом — более того, большинство потенциально существующих экземпляров первого робота эту конкретную ошибку вообще не допустят. Делаем вывод (с одной, по-видимому, незначительной оговоркой, суть которой в том, что хаотические компоненты нашей модели можно еще заменить на подлинно случайные; см. ниже,): никакой набор познаваемых вычислительных правил(неизменных нисходящих, «самосовершенствующихся» восходящих либо и тех, и других в какой угодно пропорции) не может обусловливать поведение нашего сообщества роботов, равно как и отдельных его членов, — если исходить из допущения, что роботы способны достичь человеческого уровня математического понимания. Вообразив, что мы сами функционируем как управляемые вычислительными правилами роботы, мы оказываемся перед непреодолимым противоречием.
3.22. Спасет ли вычислительную модель разума хаос?
Вернемся ненадолго к вопросу о хаосе. Хотя, как неоднократно подчеркивается в этой книге (в частности, в), хаотические системы в том виде, в каком они обычно рассматриваются, представляют собой всего-навсего особого рода вычислительные системы, довольно широко распространено мнение о том, что феномен хаоса может иметь весьма значительное отношение к деятельности мозга. В представленных выше рассуждениях я опирался, с одной стороны, на обоснованное, как мне кажется, предположение, согласно которому любое хаотическое вычислительное поведение можно без существенной потери функциональности заменить поведением подлинно случайным. Против такого допущения можно привести, по крайней мере, одно вполне оправданное возражение. Поведение хаотической системы — пусть мы и ожидаем от него огромной сложности в мельчайших деталях и видимой случайности — в действительности случайным не является. В самом деле, многие хаотические системы демонстрируют весьма интересное сложное поведение, явно отклоняющееся от чистой случайности. (Иногда для описания сложного неслучайного поведения, демонстрируемого хаотическими системами, используется термин «край хаоса».) Возможно ли, чтобы именно в хаосе крылась разгадка тайны человеческого интеллекта? Если это так, то нам предстоит понять нечто доселе абсолютно неведомое относительно того, как ведут себя в соответствующих ситуациях хаотические системы. Хаотической системе в такой ситуации придется очень близко аппроксимировать невычислительное поведение в асимптотическом пределе — или нечто подобное. Демонстрации такого поведения, насколько мне известно, еще никто не представлял. Возможность, тем не менее, интересная, и я надеюсь, что в последующие годы ею кто-нибудь всерьез займется.
И все же, безотносительно к упомянутой возможности, хаос может предоставить нам лишь очень сомнительный способ обойти неутешительное заключение, к которому мы пришли в предыдущем разделе. В представленных выше рассуждениях эффективная хаотическая неслучайность (т. е. непсевдослучайность) играла хоть какую-то роль один-единственный раз — когда мы рассматривали моделирование не просто «действительного» поведения нашего робота (или сообщества роботов), но полный ансамбль всех возможных действий роботов, согласующихся с заданным набором механизмовТа же аргументация применима и здесь, только на сей раз мы не станем включать в эту случайность хаотические результаты функционирования упомянутых механизмов. Впрочем, некоторые случайные элементы (например, в составе исходных данных, определяющих начальное состояние модели) присутствовать все же могут, а чтобы оперировать этой случайностью, мы можем вновь воспользоваться идеей ансамбля и тем самым получить возможность рассмотреть в процессе синхронного моделирования большое количество возможных альтернативных робото-историй. Однако само хаотическое поведение нам просто-напросто придется вычислять — в чем нет ничего странного: на практике, в математических примерах, хаотическое поведение обыкновенно и вычисляется на компьютере. Ансамбль возможных альтернатив окажется в данном случае не таким большим, каким он мог бы быть, допусти мы аппроксимацию хаоса случайностью. Однако в том случае ансамбль подобного размера был нужен лишь для того, чтобы мы могли лишний раз удостовериться в том, что устранили все возможные ошибки в-утверждениях роботов. Даже если ансамбль включает в себя всего одну «историческую линию» сообщества роботов, можно быть совершенно уверенным в том, что при достаточно жестком наборе критериев для присвоения статуса такие ошибки будут очень быстро устраняться либо самими их виновниками, либо какими-то другими роботами сообщества. В ансамбле умеренного размера, составленном из подлинно случайных элементов, устранение ошибок будет происходить более эффективно, при дальнейшем же расширении ансамбля посредством введения в него случайных аппроксимаций на замену подлинно хаотическому поведению сколько-нибудь существенного роста эффективности не предвидится. Вывод: хаос не избавит нас от проблем, связанных с созданием вычислительной модели разума.