Лекции сайта «РазныеРазности»

Вид материалаЛекции
Подобный материал:
1   ...   17   18   19   20   21   22   23   24   25


Понятию «сложности» применительно к-высказываниям можно придать точный характер на основании спецификаций ма­шины Тьюринга, как мы это уже делали в(в конце коммен­тария к возражению). Для большей конкретности мы можем воспользоваться явными формулировками, представленными в НРК (глава 2), как вкратце показано в приложении(а это уже здесь, с. 191). Итак, степенью сложности-высказывания, утверждающего незавершаемость вычисления машины


Тьюринга, мы будем полагать числознаков в двоичном пред­ставлении большего из пары чисел


Причина введения в данное рассуждение числа— вме­сто того чтобы удовлетвориться какой-нибудь огромной вели­чиной в лице одного лишь коэффициента , — заключается в необходимости учета следующей возможности. Предположим, что внутри нашего ансамбля, благодаря редчайшей случайно­сти, появляется «безумный» робот, который формулирует какое-нибудь абсолютно нелепое-утверждение, ничего не сообщая о нем остальным роботам, причем нелепость этого утверждения настолько велика, что ни одному из роботов никогда не придет в «голову» — просто на всякий случай — сформулировать его опровержение. В отсутствие числатакое-утверждение авто­матически попадет, в соответствии с нашими критериями, в груп­пу «безошибочных». Введение же достаточно большоготакую ситуацию предотвратит — при условии, разумеется, что подобное «безумие» возникает среди роботов не часто. (Вполне возможно, что я упустил из виду еще что-нибудь, и необходимо будет поза­ботиться о каких-то дополнительных мерах предосторожности. Представляется разумным, однако, по крайней мере, на данный момент, ограничиться критериями, предложенными выше.)


Учитывая, что все-утверждения, согласно исходному до­пущению, следует полагать «неопровержимыми» заявлениями нашего робота (основанными на, по всей видимости, присущих роботу четких логических принципах и посему не содержащими ничего такого, в чем робот испытывает хотя бы малейшее со­мнение), то вполне разумным представляется предположение, что вышеописанным образом действительно можно устранить редкие промахи в рассуждениях робота, причем функции ич. , вряд ли окажутся чем-то из ряда вон выходящим. Пред­положив, что все так и есть, мы опять получаем не что иное, как вычислительную систему — систему познаваемую (в том смысле, что познаваемыми являются лежащие в основе системы правила) при условии познаваемости исходного набора меха­низмовопределяющего поведение нашего робота. Эта вычис­лительная система дает нам новую формальную систему (также познаваемую), теоремами которой являются те самые безошибочные-утверждения (либо утверждения, выводимые из них посредством простых логических операций исчисления предикатов).


Вообще говоря, для нас с вами важно не столько то, что эти утверждения действительно безошибочны, сколько то, что в их безошибочности убеждены сами роботы (для привержен­цев точки зренияособо оговоримся, что концепцию роботовой «убежденности» следует понимать в чисто операцион­ном смысле моделирования роботом этой самой убежденности, см.).


Если точнее, то нам требуется, чтобы робот был готов по­верить в то, что упомянутые-утверждения действительно без­ошибочны, исходя из допущения, что именно набором механиз­мови определяется его поведение (гипотеза). До сих пор, в данном разделе, мы занимались исключительно устра­нением ошибок в-утверждениях робота. Однако, на самом де­ле, ввиду представленного в_ фундаментального противоре­чия, нас интересует устранение ошибок в его-утверждениях, т. е. в тех п -высказываниях, что по неопровержимой убежден­ности робота следуют из гипотезы. Поскольку принятие ро­ботами формальной системыв любом случае обусловлено гипотезой, мы вполне можем предложить им для обдумывания и более обширную формальную систему, определяемую аналогично формальной системеизПод в данном случае понимается формальная система, построенная из-утверждений, «безошибочность» которых установлена в соответствии с вышеописанными критериямиВ частно­сти, утверждение «утверждениеистинно» считается здесь безошибочным-утверждением. Те же рассуждения, что и в приводят нас к выводу, что роботы не смогут при­нять допущение, что они построены в соответствии с набором механизмов(вкупе с проверочными критериями), независимо от того, какие именно вычислительные правиламы им предложим.


Достаточно ли этих соображений для того, чтобы окон­чательно удостовериться в наличии противоречия? У читателя, возможно, осталось некое тревожное ощущение — кто знает, вдруг сквозь тщательно расставленные сети, невзирая на все наши старания, проскользнули какие-нибудь ошибочные или-утверждения? В конце концов, приведенные выше рас­суждения будут иметь смысл лишь в том случае, если нам удастся исключить абсолютно все ошибочные-утверждения (или-утверждения) в отношении-высказываний. Оконча­тельно и бесповоротно удостовериться в истинности утвер­ждениянам (и роботам) поможет обоснованность формальной системы ' (обусловленная гипотезой ). Эта самая обоснованность подразумевает, что система ни в коем случае не может содержать таких-утверждений, которые являются — или всего лишь предполагаются — ошибоч­ными. Невзирая на все предпринятые меры предосторожности, полной уверенности у нас (да и у роботов, полагаю) все-таки нет — хотя бы по той простой причине, что количество возмож­ных утверждений подобного рода бесконечно.


3.20. Возможность ограничиться конечным числом-утверждений


Есть, впрочем, возможность именно эту конкретную про­блему разрешить и сузить область рассмотрения до конечно­го множества различных-утверждений. Само доказатель­ство несколько громоздко, однако основная идея заключает­ся в том, что нам необходимо рассматривать только те высказывания, спецификации которых являются «краткими» в некотором вполне определенном смысле. Конкретная степень необходимой «краткости» зависит от того, насколько сложное описание системы механизмовнам необходимо. Чем сложнее описаниетем «длиннее» допускаемые к рассмотрению высказывания. «Максимальная длина» задается неким числом с, которое можно определить из степени сложности правил, опре­деляющих формальную системуСмысл в том, что при переходе к гёделевскому предположению для этой формальной системы — которую нам, вообще говоря, придется слегка моди­фицировать — мы получим утверждение, сложность которого бу­дет лишь немногим выше, нежели сложность такой модифициро­ванной системы. Таким образом, проявив должную осторожность при выборе числа с, мы можем добиться того, что и гёделевское предположение будет также «кратким». Это позволит нам полу­чить требуемое противоречие, не выходя за пределы конечного множества «кратких»-высказываний.


Подробнее о том, как это осуществить на практике, мы пого­ворим в оставшейся части настоящего раздела. Тем из читателей, кого такие подробности не занимают (уверен, таких наберется немало), я порекомендую просто-напросто пропустить весь этот материал.


Нам понадобится несколько модифицировать формальную системуприведя ее к виду— для краткости я буду обозначать ее просто как(отброшенные обозначения в данной ситуации несущественны и лишь добавляют путаницы и громоздкости). Формальная системаопределяется следу­ющим образом: при построении этой системы допускается при­нимать в качестве «безошибочных» только те-утверждения, степень сложности которых (задаваемая описанным выше чис­лом) меньше с, где с есть некоторое должным образом вы­бранное число, подробнее о котором я расскажу чуть ниже. Для «безошибочных»-утверждений, удовлетворяющих неравен­ству, я буду использовать обозначение «краткие утверждения». Как и прежде, множество действительных тео­рем формальной системыбудет включать в себя не толь­ко-утверждения, но также и утверждения, полу­чаемые из-утверждений посредством стандартных логических операций (позаимствованных, скажем, из исчисления предикатов). Хотя количество теорем системыбесконечно, все они выводятся с помощью обыкновенных логических опера­ций из конечного множества-утверждений. Да­лее, поскольку мы ограничиваем рассмотрение конечным множе­ством, мы вполне можем допустить, что функциипосто­янны (и принимают, скажем, наибольшие значения на конечном интервале). Таким образом, формальная системазадается лишь четырьмя постоянными с,и общей системой меха­низмовопределяющих поведение робота.


Отметим существенный для наших рассуждений момент: гёделевская процедура строго фиксирована и не нуждается в увеличении сложности выше некоторого определенного предела. Гёделевским предположениемдля формальной системы является-высказывание, степень сложности которого должна лишь на сравнительно малую величину превышать степень слож­ности самой системыпричем эту величину можно определить точно.


Конкретности ради я позволю себе некоторое нарушение си­стемы обозначений и буду вкладывать в записьнекий особый смысл, который может и не совпасть в точности с опреде­лением, данным вВ формальной системенас интересует лишь ее способность доказывать-высказывания. В силу этой своей способности системадает нам алгебраическую процеду­ру А, с помощью которой мы можем в точности установить (на основании завершения выполнения А) справедливость тех высказываний, формулировка которых допускается правилами системыА под-высказыванием понимается утверждение вида «действие машины Тьюрингане завершается» — здесь и далее мы будем пользоваться специальным способом маркировки машин Тьюринга, описанным в Приложении А (или в НРК, глава 2). Мы полагаем, что процедура А выполняется над парой чиселкак вТаким образом, собственно вы­числениезавершается в том и только в том случае, если в рамках формальной системывозможно установить справед­ливость того самого-высказывания, которое утверждает, что «действиене завершается». С помощью описанной в процедуры мы получили некое конкретное вычисление (обозна­ченное там как), а вместе с ним, при условии обоснован­ности системыи истинное-высказывание, которое систе­меоказывается «не по зубам». Именно это-высказывание я буду теперь обозначать черезОно существенно эквива­лентно (при условии достаточной обширности) действительно­му утверждению «системанепротиворечива», хотя в некоторых деталях эти два утверждения могут и не совпадать


Пустьесть степень сложности процедуры А (по опреде­лению, данному вв конце комментария к возражению) — иными словами, количество знаков в двоичном представлении числа а, гдеТогда, согласно построению, представлен­ному в явном виде в Приложении А, находим, что степень сложности ню утвержденияудовлетворяет неравенству Для нужд настоящего рассуждения мы мо­жем определить степень сложности формальной системыкак равную степени сложности процедурыт. е. числуПриняв такое определение, мы видим, что «излишек» сложности, связан­ный с переходом отоказывается еще меньше, чем и без того относительно крохотная величина


Далее нам предстоит показать, что еслипри достаточно большомтоОтсюда, соответственно, последует, что и-высказываниедолжно оказаться в пределах досягаемости системыпри условии, что роботы принимаютс-убежденностью. Доказав, что


мы докажем и то, чтобуквой мы обозначили значениеприЕдинственная возможная сложность здесь обусловлена тем обстоятельством, что сама величиназависит от с, хотя и не обязательно очень силь­но. Эта зависимостьот с имеет две различных причины. Во-первых, число с являет собой явный предел степени сложности тех-высказываний, которые в определении формальной си­стемыназываются «безошибочными-утверждениями», вторая же причина происходит из того факта, что система явным образом обусловлена выбором чисели мож­но предположить, что для принятия в качестве «безошибочно­го»-утверждения большей сложности необходимы какие-то более жесткие критерии.


Относительно первой причины зависимостиот с отметим, что описание действительной величины числа с необходимо за­давать в явном виде только однажды (после чего внутри системы достаточно обозначения с). Если при задании величины с исполь­зуется чисто двоичное представление, то (при больших с) такое описание дает всего-навсего логарифмическую зависимость от с (поскольку количество знаков в двоичном представлении натурального п равно приблизительно). Вообще говоря, учитывая, что число с интересует нас лишь в качестве возможного предела, точное значение которого находить вовсе не обязатель­но, мы можем поступить гораздо более остроумным образом. На­пример, числоспоказателями можно задать с помощью s символов или около того, и вовсе нетрудно подыскать примеры, в которых величина задаваемого числа возрастает с ростомеще быстрее. Сгодится любая вычислимая функция от s. Иными сло­вами, для того чтобы задать предел с (при достаточно большом значении с), необходимо всего лишь несколько символов.


Что касается второй причины, т. е. зависимости от с чи­селто, в силу вышеизложенных соображений, пред­ставляется очевидным, что для задания величин этих чисел (в осо­бенности, их возможных предельных значений) совершенно не требуется, чтобы количество знаков в их двоичном представлении возрастало так же быстро, как с, более чем достаточно будет и, скажем, обыкновенной логарифмической зависимости от с. Сле­довательно, мы с легкостью можем допустить, что зависимость величиныот с является не более чем гру­бо логарифмической, а также устроить так, чтобы само число с всегда было больше этой величины.


Согласимся с таким выбором с и будем в дальнейшем вме­стозаписывать. Итак,есть формальная система, теоремами которой являются все математические высказывания, какие можно вывести из конечного количества утверждений, используя стандартные логические правила (ис­числение предикатов). Количество этих -утверждений ко­нечно, поэтому разумным будет предположить, что для гарантии их действительной безошибочности вполне достаточно некото­рого набора постоянныхЕсли роботы верят в это с-убежденностью, то они, несомненно,-заключат, что гёделевское предположениетакже истинно на основании гипотезы, поскольку является П1-высказыванием меньшей, нежели с, сложности. Рассуждение для получения утвержде­нияиз-убежденности в обоснованности формальной системыдостаточно просто (в сущности, я его уже привел), так что с присвоением этому утверждению статусапроблем возникнуть не должно. То есть самотакже должно быть теоремой системы. Это, однако, противоречит убежденности роботов в обоснованности. Таким образом, упомянутая убе­жденность (при условии справедливости гипотезыи доста­точно больших числах) оказывается несовместимой с убежденностью в том, что поведением роботов действительно управляют механизмы— а значит, механизмыповедением роботов управлять не могут.


Как же роботы могут удостовериться в том, что были выбра­ны достаточно большие числа? Никак. Вместо этого они могут выбрать некоторый набор таких чисел и попробовать до­пустить, что те достаточно велики, — и прийти в результате к про­тиворечию с исходным предположением, согласно которому их поведение обусловлено набором механизмовДалее они воль­ны предположить, что достаточным окажется набор из несколько больших чисел, — снова прийти к противоречию и т.д. Вско­ре они сообразят, что к противоречию они приходят при любом выборе значений (вообще говоря, здесь нужно учесть, помимо прочего, небольшой технический момент, суть которого состоит в том, что при совершенно уже запредельных значениях значение с также должно будет несколько подрасти — однако это неважно). Таким образом, получая один и тот же результат вне зависимости от значений, роботы — равно как, по всей видимости, и мы — приходят к заключению, что в основе их математических мыслительных процессов не может лежать познаваемая вычислительная процедуракакой бы она ни была.


3.21. Окончателен ли приговор?


Отметим, что к такому же выводу мы придем и в случае принятия нами самых разных возможных мер предосторожности, причем вовсе необязательно подобных тем, что я предлагал выше. Наверняка в предложенную модель можно еще внести множество усовершенствований. Можно, например, предположить, что ро­боты в результате длительной работы впадают в «старческое сла­боумие», их сообщества вырождаются, а стандарты падают, т. е. увеличение числа Т выше определенного значения на деле уве­личивает и вероятность ошибки в-утверждениях. С другой стороны, если слишком большим сделатьто возникает риск исключить вообще все-утверждения из-за существу­ющего в сообществе меньшинства «глупых» роботов, разража­ющихся время от времени произвольными-утверждениями, которые в данном случае не перекроются необходимым коли­чеством-утверждений, формулируемых роботами здравомыс­лящими. Несомненно, не составит большого труда такой риск полностью исключить, введя еще несколько ограничивающих па­раметров или, скажем, сформировав группу элитных роботов, силами которых рядовые члены сообщества будут непрерывно тестироваться на предмет адекватности своих интеллектуальных способностей, и потребовав к тому же, чтобы статусприсваивался утверждениям только с одобрения всего сообщества робо­тов в целом.


Существует и много других возможностей улучшения каче­ства-утверждений или исключения ошибочных утверждений из общего (конечного) их числа. Кого-то, возможно, обеспоко­ит тот факт, что, несмотря на установление предела с сложно­сти-высказываний, ограничивающего общее количество кан­дидатов наилистатус до некоторой конечной величины, эта величина окажется все же чрезвычайно огромной (будучи экспоненциально зависимой от с), вследствие чего становит­ся весьма сложно однозначно удостовериться, что исключе­ны все возможные ошибочныеутверждения. В самом де­ле, никакого ограничения не задается в рамках нашей моде­ли на количество «робото-вычислений», необходимых для по­лучения удовлетворительного'-доказательства какого-либо из-высказываний. Следует ввести четкое правило: чем длин­нее в таком доказательстве цепь рассуждений, тем более жест­кие критерии применяются при решении вопроса о присвоении ему-статуса. В конце концов, математики-люди реагировали бы именно так. Прежде чем принять в качестве неопровержимого доказательства собрание многочисленных путаных аргументов, мы, естественно, чрезвычайно долго и придирчиво его изучаем. Аналогичные соображения, разумеется, применимы и к тому слу­чаю, когда предложенное доказательство на предмет его соответ­ствия-статусу исследуют роботы.


Вышеприведенные рассуждения в равной степени справед­ливы и в случае любой дальнейшей модификации условий, имею­щих целью устранение ошибок, при условии, что характер такой модификации в некоем широком смысле аналогичен характеру уже предложенных. Для того чтобы эти рассуждения работали, необходимо лишь наличие какого угодно четко сформулиро­ванного и вычислимого условия, достаточного для устранения всех ошибочных-утверждений. В результате мы приходим к строгому выводу: никакие познаваемые механизмы, пусть и снабженные какими угодно вычислительными «подпорка­ми», не способны воспроизвести корректное математиче­ское умозаключение человека.


Мы рассматривали-утверждения, которые, оказавшись по той или иной причине ошибочными, в принципе исправимы самими роботами, — пусть даже в каком-то конкретном экземпляре модели роботова сообщества эти утверждения так и оста­ются неисправленными. Что же еще может означать (в опера­ционном смысле) фраза «в принципе исправимы», как не «ис­правимы средствами некоторой общей процедуры, подобной тем, что предложены выше»? Ошибка, которую не исправил позднее тот робот, что ее допустил, может быть исправлена каким-либо другим роботом — более того, большинство потенциально суще­ствующих экземпляров первого робота эту конкретную ошибку вообще не допустят. Делаем вывод (с одной, по-видимому, незна­чительной оговоркой, суть которой в том, что хаотические компо­ненты нашей модели можно еще заменить на подлинно случай­ные; см. ниже,): никакой набор познаваемых вычислитель­ных правил(неизменных нисходящих, «самосовершенствую­щихся» восходящих либо и тех, и других в какой угодно про­порции) не может обусловливать поведение нашего сообщества роботов, равно как и отдельных его членов, — если исходить из допущения, что роботы способны достичь человеческого уровня математического понимания. Вообразив, что мы сами функцио­нируем как управляемые вычислительными правилами роботы, мы оказываемся перед непреодолимым противоречием.


3.22. Спасет ли вычислительную модель разума хаос?


Вернемся ненадолго к вопросу о хаосе. Хотя, как неодно­кратно подчеркивается в этой книге (в частности, в), хаоти­ческие системы в том виде, в каком они обычно рассматриваются, представляют собой всего-навсего особого рода вычислительные системы, довольно широко распространено мнение о том, что фе­номен хаоса может иметь весьма значительное отношение к де­ятельности мозга. В представленных выше рассуждениях я опи­рался, с одной стороны, на обоснованное, как мне кажется, пред­положение, согласно которому любое хаотическое вычислитель­ное поведение можно без существенной потери функционально­сти заменить поведением подлинно случайным. Против такого допущения можно привести, по крайней мере, одно вполне оправ­данное возражение. Поведение хаотической системы — пусть мы и ожидаем от него огромной сложности в мельчайших деталях и видимой случайности — в действительности случайным не является. В самом деле, многие хаотические системы демонстрируют весьма интересное сложное поведение, явно отклоня­ющееся от чистой случайности. (Иногда для описания сложно­го неслучайного поведения, демонстрируемого хаотическими системами, используется термин «край хаоса».) Возможно ли, чтобы именно в хаосе крылась разгадка тайны человеческого интеллекта? Если это так, то нам предстоит понять нечто доселе абсолютно неведомое относительно того, как ведут себя в соот­ветствующих ситуациях хаотические системы. Хаотической си­стеме в такой ситуации придется очень близко аппроксимировать невычислительное поведение в асимптотическом пределе — или нечто подобное. Демонстрации такого поведения, насколько мне известно, еще никто не представлял. Возможность, тем не менее, интересная, и я надеюсь, что в последующие годы ею кто-нибудь всерьез займется.


И все же, безотносительно к упомянутой возможности, хаос может предоставить нам лишь очень сомнительный способ обой­ти неутешительное заключение, к которому мы пришли в преды­дущем разделе. В представленных выше рассуждениях эффек­тивная хаотическая неслучайность (т. е. непсевдослучайность) играла хоть какую-то роль один-единственный раз — когда мы рассматривали моделирование не просто «действительного» по­ведения нашего робота (или сообщества роботов), но полный ансамбль всех возможных действий роботов, согласующихся с заданным набором механизмовТа же аргументация приме­нима и здесь, только на сей раз мы не станем включать в эту случайность хаотические результаты функционирования упомя­нутых механизмов. Впрочем, некоторые случайные элементы (на­пример, в составе исходных данных, определяющих начальное состояние модели) присутствовать все же могут, а чтобы опе­рировать этой случайностью, мы можем вновь воспользоваться идеей ансамбля и тем самым получить возможность рассмотреть в процессе синхронного моделирования большое количество воз­можных альтернативных робото-историй. Однако само хаотиче­ское поведение нам просто-напросто придется вычислять — в чем нет ничего странного: на практике, в математических при­мерах, хаотическое поведение обыкновенно и вычисляется на компьютере. Ансамбль возможных альтернатив окажется в дан­ном случае не таким большим, каким он мог бы быть, допусти мы аппроксимацию хаоса случайностью. Однако в том случае ансамбль подобного размера был нужен лишь для того, чтобы мы могли лишний раз удостовериться в том, что устранили все возможные ошибки в-утверждениях роботов. Даже если ан­самбль включает в себя всего одну «историческую линию» со­общества роботов, можно быть совершенно уверенным в том, что при достаточно жестком наборе критериев для присвоения статуса такие ошибки будут очень быстро устраняться либо са­мими их виновниками, либо какими-то другими роботами сооб­щества. В ансамбле умеренного размера, составленном из под­линно случайных элементов, устранение ошибок будет происхо­дить более эффективно, при дальнейшем же расширении ансамб­ля посредством введения в него случайных аппроксимаций на замену подлинно хаотическому поведению сколько-нибудь суще­ственного роста эффективности не предвидится. Вывод: хаос не избавит нас от проблем, связанных с созданием вычислительной модели разума.