Г. И. Иконникова и д-р техн наук проф

Вид материалаУчебник

Содержание


Глобальный эволюционизм
Структурные уровни организации материи
Подобный материал:
1   ...   5   6   7   8   9   10   11   12   ...   29
синергетика — теория самоорганизации. Ее разработка началась несколько десятилетий назад, и в настоящее время она развивается по нескольким направлениям: это синергетика (Г. Хакен), неравновесная термодинамика (И. Пригожин) и др. Не вдаваясь в детали и оттенки развития этих направлений, охарактеризуем общий смысл предлагаемого ими комплекса идей, называя их синергетическими (термин Г. Хакена).

Главный мировоззренческий сдвиг, произведенный синергетикой, можно выразить следующим образом:
  • процессы разрушения и созидания, деградации и эволюции во Вселенной по меньшей мере равноправны;
  • процессы созидания (нарастания сложности и упорядоченности) имеют единый алгоритм независимо от природы систем, в которых они осуществляются.

Таким образом, синергетика претендует на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так и неживой природе. Под самоорганизацией при этом понимается спонтанный переход открытой неравновесной системы от менее к более сложным и упорядоченным формам организации. Отсюда следует, что объектом синергетики могут быть отнюдь не любые системы, а только те, которые удовлетворяют по меньшей мере двум условиям:
  • они должны быть открытыми, т.е. обмениваться веществом или энергией с внешней средой;
  • они должны также быть существенно неравновесными, т.е. находиться в состоянии, далеком от термодинамического равновесия.

82

Но именно такими являются большинство известных нам систем. Изолированные системы классической термодинамики — это определенная идеализация, в реальности такие системы исключение, а не правило. Сложнее со всей Вселенной в целом: если считать ее открытой системой, то что может служить ее внешней средой? Современная физика полагает, что такой средой для нашей вещественной Вселенной является вакуум.

Итак, синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности и упорядоченности. В цикле развития такой системы наблюдаются две фазы:
  1. Период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию.
  2. Выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

Важная особенность: переход системы в новое устойчивое состояние неоднозначен. Достигшая критических параметров система из состояния сильной неустойчивости как бы «сваливается» в одно из многих возможных новых для нее устойчивых состояний. В этой точке (ее называют точкой бифуркации) эволюционный путь системы как бы разветвляется, и какая именно ветвь развития будет выбрана — решает случай! Но после того как «выбор сделан» и система перешла в качественно новое устойчивое состояние, назад возврата нет. Процесс этот необратим. А отсюда, между прочим, следует, что развитие таких систем имеет принципиально непредсказуемый характер. Можно просчитать варианты ветвления путей эволюции системы, но какой именно из них будет выбран случаем, однозначно спрогнозировать нельзя.

Самый популярный и наглядный пример образования структур нарастающей сложности — хорошо изученное в гидродинамике явление, названное ячейками Бенара. При подогреве жидкости, находящейся в сосуде круглой или прямоугольной формы, между нижним и верхним ее слоями возникает некоторая разность (градиент) температур. Если градиент мал, то перенос тепла происходит на микроскопическом уровне и никакого макроскопического движения не происходит. Однако при достижении им некоторого критического значения в жидкости внезапно (скачком) возникает макроскопическое движение, образующее четко выраженные структуры в виде цилиндрических ячеек. Свер-

83

ху такая макроупорядоченность выглядит как устойчивая ячеистая структура, похожая на пчелиные соты.

Это хорошо знакомое всем явление с позиций статистической механики совершенно невероятно. Ведь оно свидетельствует о том, что в момент образования ячеек Бенара миллиарды молекул жидкости, как по команде, начинают вести себя скоординированно, согласованно, хотя до этого пребывали в совершенно хаотическом движении. Создается впечатление, что каждая молекула «знает», что делают все остальные, и желает двигаться в общем строю. (Само слово «синергетика», кстати, как раз и означает «совместное действие».) Классические статистические законы здесь явно не работают, это явление иного порядка. Ведь даже если такая «правильная» и устойчиво «кооперативная» структура и образовалась бы случайно, что почти невероятно, она тут же распалась бы. Но она не распадается при поддержании соответствующих условий (приток энергии извне), а устойчиво сохраняется. Значит, возникновение таких структур нарастающей сложности — не случайность, а закономерность.

Поиск аналогичных процессов самоорганизации в других классах открытых неравновесных систем вроде бы обещает быть успешным: механизм действия лазера, рост кристаллов, химические часы (реакция Белоусова — Жаботинского), формирование живого организма, динамика популяций, рыночная экономика, наконец, в которой хаотичные действия миллионов свободных индивидов приводят к образованию устойчивых и сложных макроструктур. Все это примеры самоорганизации систем самой различной природы.

Синергетическая интерпретация такого рода явлений открывает новые возможности и направления их изучения. В обобщенном виде новизну синергетического подхода можно выразить следующими позициями.
  • Хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность). Порядок и хаос не исключают, а дополняют друг друга: порядок возникает из хаоса.
  • Линейный характер эволюции сложных систем, к которому привыкла классическая наука, не правило, а скорее исключение; развитие большинства таких систем носит нелинейный характер. А это значит, что для сложных систем всегда существует несколько возможных путей эволюции.

84

• Развитие осуществляется через случайный выбор одной из нескольких разрешенных возможностей дальнейшей эволюции в точках бифуркации. Следовательно, случайность — не досадное недоразумение, она встроена в механизм эволюции. А еще это означает, что нынешний путь эволюции системы может быть и не лучше отвергнутых случайным выбором.

Синергетика родом из физических дисциплин — термодинамики, радиофизики, но ее идеи носят междисциплинарный характер. Они подводят базу под совершающийся в естествознании глобальный эволюционный синтез. Поэтому в синергетике видят одну из важнейших составляющих современной научной картины мира.

3.5.3. Общие контуры современной естественно-научной картины мира

Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых подчиняется некоторым общим закономерностям. При этом он имеет свою долгую историю, которая в общих чертах известна современной науке. Вот как выглядит хронология наиболее важных событий этой истории:

15 млрд лет назад — Большой взрыв

3 мин спустя — образование вещественной осно-

вы Вселенной (фотоны, нейтрино и антинейтрино с примесью ядер водорода, гелия и электронов)

Через несколько сотен — появление атомов (легких

тысяч лет элементов)

14—11 млрд лет назад — образование разномасштабных

структур (галактик), появление звезд первого поколения, образование атомов тяжелых элементов

5 млрд лет назад — рождение Солнца

4,6 млрд лет назад — образование Земли

3,8 млрд лет назад — зарождение жизни

450 млн лет назад — появление растений

150 млн лет назад — появление млекопитающих

2 млн лет назад — начало антропогенеза

Подчеркнем, что современной науке известны не только «даты», но во многом и сами механизмы эволюции Вселенной от

85

Большого взрыва до наших дней. Это фантастический результат. Причем наиболее крупные прорывы к тайнам истории Вселенной осуществлены во второй половине нашего века: предложена и обоснована концепция Большого взрыва, построена кварковая модель атома, установлены типы фундаментальных взаимодействий, сформулированы первые теории их объединения и т.д. Мы обращаем внимание в первую очередь на успехи физики и космологии потому, что именно эти фундаментальные науки формируют общие контуры научной картины мира.

Картина мира, рисуемая современным естествознанием, необыкновенно сложна и проста одновременно. Сложна, потому что способна поставить в тупик человека, привыкшего к согласующимся со здравым смыслом классическим научным представлениям. Идеи начала времени, корпускулярно-волнового дуализма квантовых объектов, внутренней структуры вакуума, способной рождать виртуальные частицы, — эти и другие подобные новации придают нынешней картине мира немножко «безумный» вид. (Впрочем, это преходяще: когда-то ведь и мысль о шарообразности Земли тоже выглядела совершенно «безумной»).

Вместе с тем эта картина мира величественно проста, стройна и даже элегантна. Подобные качества ей придают в основном уже рассмотренные нами ведущие принципы построения и организации современного научного знания:
  • системность,
  • глобальный эволюционизм,
  • самоорганизация,
  • историчность.

Данные принципы построения научной картины мира в целом соответствуют фундаментальным закономерностям существования и развития самой Природы.

Системность означает воспроизведение наукой того факта, что наблюдаемая Вселенная предстает как наиболее крупная из всех известных нам систем, состоящая из огромного множества элементов (подсистем) разного уровня сложности и упорядоченности.

Под «системой» обычно понимают некое упорядоченное множество взаимосвязанных элементов. Эффект системности обнаруживается в появлении у целостной системы новых свойств, возникающих в результате взаимодействия элементов (атомы водорода и кислорода, например, объединенные в молекулу воды, радикально меняют свои обычные свойства). Другой важной ха-

86

рактеристикой системной организации является иерархичность, субординация — последовательное включение систем нижних уровней в системы более высоких уровней.

Системный способ объединения элементов выражает их принципиальное единство: благодаря иерархичному включению систем разных уровней друг в друга (по принципу матрешки) любой элемент любой системы оказывается связан со всеми элементами всех возможных систем. (Например: человек — биосфера — планета Земля — Солнечная система — Галактика и т.д.) Именно такой, принципиально единый, характер демонстрирует нам окружающий мир. Подобным же образом организуется, соответственно, как научная картина мира, так и создающее ее естествознание. Все его части ныне теснейшим образом взаимосвязаны; сейчас практически нет ни одной «чистой» науки, все пронизано и преобразовано физикой и химией.

Глобальный эволюционизм — это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Эволюционирующий характер Вселенной также свидетельствует о принципиальном единстве мира, каждая составная часть которого есть историческое следствие глобального эволюционного процесса, начатого Большим взрывом.

Самоорганизация — это наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние, по-видимому, сходен для систем всех уровней.

Эти принципиальные особенности современной естественнонаучной картины мира и определяют в главном ее общий контур, а также сам способ организации разнообразного научного знания в нечто целое и последовательное.

Однако у нее есть и еще одна особенность, отличающая ее от прежних вариантов. Она заключается в признании историчности, а следовательно, принципиальной незавершенности настоящей, да и любой другой научной картины мира. Та, которая есть сейчас, порождена как предшествующей историей, так и специфическими социокультурными особенностями нашего времени. Развитие общества, изменение его ценностных ориентаций, осознание важности исследования уникальных природных систем, в которые

87

составной частью включен сам человек, меняет стратегию научного поиска, само отношение человека к миру.

Но ведь развивается и Вселенная. Конечно, развитие общества и Вселенной осуществляется в разных темпоритмах. Но их взаимное наложение делает идею построения окончательной, завершенной, абсолютно истинной научной картины мира практически неосуществимой.

Итак, мы попытались отметить некоторые принципиальные особенности современной естественно-научной картины мира. Это всего лишь ее общий контур, абрис, набросав который, можно приступать к более детальному знакомству с конкретными концептуальными новшествами современного естествознания. О них будет рассказано в следующих главах.

Вопросы для самоконтроля
  1. Что такое парадигма?
  2. Опишите содержание естественно-научной революции конца XIX - начала XX в.
  3. Каковы основные закономерности развития науки?
  4. В чем проявляются дифференциация и интеграция научного знания?
  5. Что такое «математическая гипотеза»?
  6. Был этот мир глубокой тьмой окутан. Да будет свет! И вот явился Ньютон. Но Сатана не долго ждал реванша.

Пришел Эйнштейн — и стало все, как раньше.

(С.Я. Маршак) Над какой особенностью научного познания иронизирует автор?

7. В чем суть принципа глобального эволюционизма? Как он проявляется?
  1. Опишите основные идеи синергетики. В чем заключается новизна синергетического подхода?
  2. Назовите принципиальные особенности современной естественно-научной картины мира.

Библиографический список
  1. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. — М.: Эдиториал УРСС, 2001.
  2. Кузнецов В.И., Идлис Г.М., Гущина В.Н. Естествознание. — М.: Агар, 1996.
  3. Кун Т. Структура научных революций. — М.: Прогресс, 1975.
  4. Лакатос И. Методология научных исследовательских программ // Вопросы философии. — 1995. — №4.
  5. Ровинский Р.Е. Развивающаяся Вселенная. — М., 1995.
  6. Синергетическая парадигма. Многообразие поисков и подходов. — М.: Прогресс-Традиция, 2000.
  7. Современная философия науки. — М.: Логос, 1996.
  8. Философия и методология науки. — М.: Аспект Пресс, 1996.

Глава 4

СТРУКТУРНЫЕ УРОВНИ ОРГАНИЗАЦИИ МАТЕРИИ

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие "системы.

Система представляет собой совокупность элементов и связей между ними.

Понятие «элемент» означает минимальный, далее неделимый компонент в рамках системы. Элемент является таковым лишь по отношению к данной системе, в других же отношениях он сам может представлять сложную систему.

Совокупность связей между элементами образует структуру системы.

Устойчивые связи элементов определяют упорядоченность системы. Существуют два типа связей между элементами системы: по «горизонтали» и по «вертикали».

Связи по «горизонтали» — это связи координации между однопорядко-выми элементами. Они носят коррелирующий характер: ни одна часть системы не может измениться без того, чтобы не изменились другие части.

Связи по «вертикали» — это связи субординации, т.е. соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим и подчиняться им. Вертикальная структура включает уровни организации системы, а также их иерархию.

Исходным пунктом всякого системного исследования является представление о целостности изучаемой системы.

Целостность системы означает, что все ее составные части, соединяясь вместе, образуют уникальное целое, обладающее новыми интегративными свойствами.

Свойства системы — не просто сумма свойств ее элементов, а нечто новое, присущее только системе в целом. Например, молекула воды Н2О. Сам по себе водород, два атома которого образуют данную систему, горит, а кислород (в нее входит один атом) поддерживает горение. Система же, образовавшаяся из этих элементов, вызвала к жизни совсем иное, а именно, ин-тегративное свойство: вода гасит огонь. Наличие свойств, присущих системе в целом, но не ее частям, определяется взаимодействием элементов.

90

Итак, согласно современным научным взглядам на природу, все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы. Все системы делятся на закрытые, в которых отсутствуют связи с внешней средой, и открытые, связанные с внешней окружающей средой.

Закрытой система может быть только теоретически, реальные природные объекты существуют во внешней среде, обмениваясь с ней веществом, энергией и информацией. Любой материальный объект от атома и клетки до галактики входит в систему более высокого уровня и может существовать только во взаимодействии с окружающей средой.



В естественных науках выделяются два больших класса материальных систем: системы неживой природы и системы живой природы.

В неживой природе в качестве структурных уровней организации материи выделяют физический вакуум, элементарные частицы, атомы, молекулы, поля, макроскопические тела, планеты и планетные системы, звезды и звездные системы — галактики, системы галактик — метагалактику.

В живой природе к структурным уровням организации материи относят системы доклеточного уровня — нуклеиновые кислоты и белки; клетки как особый уровень биологической организации, представленные в форме одноклеточных организмов и элементарных единиц живого вещества; многоклеточные организмы растительного и животного мира; надорганизменные структуры, включающие виды, популяции и биоценозы и, наконец, биосферу как всю массу живого вещества.

91

В природе все взаимосвязано, поэтому можно выделить такие системы, которые включают элементы как живой, так и неживой природы — биогеоценозы.

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта.

Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.

В науке выделяются три уровня строения материи.

Макромир — мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Микромир мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная размерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 с.

Мегамир мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.

В настоящее время в области фундаментальной теоретической физики разрабатываются концепции, согласно которым объективно существующий мир не исчерпывается материальным миром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выводу: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира1. С их точки зрения, мир высшей реальности определяет структуру и эволюцию материального мира. Утверждается, что объектами мира высшей реальности выступают не материальные системы, как в микро-, макро- и мегамирах, а некие идеальные физические и математические структуры, которые проявляются в материальном мире в виде естественно-научных законов. Эти структуры выступают как носители идей