Тема 14 Физиология головного мозга Часть V новая кора больших полушарий

Вид материалаДокументы

Содержание


Структурно-функциональная характеристика коры
Молекулярный слой
Наружный зернистый слой
Наружный пирамидный слой
Внутренний зернистый слой
Внутренний пирамидный слой
Слой полиморфных клеток
Сенсорные области коры больших полушарий
Ассоциативные области коры
Таламотеменная система
Таламолобная система
Таламовисочная система
Двигательные области коры
Вторичная двигательная кора
Афферентные и эфферентные связи моторной коры
Пирамидные пути
К корковым экстрапирамидным путям
Межполушарные взаимоотношения
Функциональная асимметрия полушарий
Парность в деятельности больших полушарий
...
Полное содержание
Подобный материал:
Тема 14

Физиология головного мозга

Часть V

Новая кора больших полушарий


Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 см2, покрывающий большие полушария конечного мозга. Она составляет около 40% массы головного мозга. В коре имеется около 14 млрд. нейронов и около 140 млрд. глиальных клеток. Кора головного мозга является филогенетически наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Структурно-функциональная характеристика коры. Кора больших полушарий состоит из шести горизонтальных слоев, расположенных в направлении с поверхности в глубь.
  1. Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.
  2. Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.
  3. Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.
  4. Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.
  5. Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.
  6. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Афферентные и эфферентные связи коры. В слоях I и IV происходят восприятие и обработка поступающих в кору сигналов. Нейроны II и III слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в V – VI слоях. Более детально деление коры на различные поля проведено на основе цитоархитектонических признаков (формы и расположения нейронов) К.Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает 8, 9, 10, 11, 12, 44, 45, 46, 47 поля. В прецентральную область входят 4 и 6 поле, в постцентральную – 1, 2, 3, 43 поля. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная 17 18 19. Височная область состоит из очень большого количества цитоархитектонических полей: 20, 21, 22, 36, 37, 38, 41, 42, 52.





Рис.1. Цитоархитектонические поля коры головного мозга человека (по К.Бродману): а – наружная поверхность полушария; б – внутренняя поверхность полушария.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. В моторной и различных зонах сенсорной коры имеются нейронные колонки диаметром 0,5-1,0 мм, которые представляют собой функциональное объединение нейронов. Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом по механизму латерального торможения и осуществлять саморегуляцию по типу возвратного торможения.

В филогенезе роль коры большого мозга в анализе и регуляции функций организма и подчинение себе нижележащих отделов ЦНС возрастает. Этот процесс называется кортиколизацией функций.

Проблема локализации функций имеет три концепции:
  • Принцип узкого локализационизма – все функции помещены в одну, отдельно взятую структуру.
  • Концепция эквипотенциализма – различные корковые структуры функционально равноценны.
  • Принцип многофункциональности корковых полей. Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.

Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры больших полушарий. Сенсорные области коры – это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (вентральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные II и IVслои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями. Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны, полимодальные нейроны которых отвечают на действие нескольких раздражителей.

╠ Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий (поля 1-3), которую обозначают как первичная соматосенсорная область (S I). Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, проекция нижней части голени и стоп – в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела (см.рис.2). Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.

Кроме S I выделяют вторичную соматосенсорную область меньшую размером (S II). Она расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции S II изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.

╠ Другой первичной сенсорной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах (поля 20 и 21). Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).





Рис.2. Схема чувствительного и двигательного гомункулусов. Разрез полушарий во фронтальной плоскости: а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре прецентральной извилины.


╠ Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативные области коры. Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры (поля 5, 7, 40), получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»), центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры (поля 9-14), имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством.; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).

При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.

Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры (поле 39). В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого доминантного полушария). Этот центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.

Двигательные области коры. В двигательной коре выделяют первичную и вторичную моторные области.

В первичной моторной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь (см.рис.2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора (поле 6) расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной течи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающий речевой праксис, а также музыкальный моторный центр (поле 45), определяющий тональность речи, способность петь.

Афферентные и эфферентные связи моторной коры. В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки V слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток V слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) ά-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) ά-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.

Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины. Волокна пирамидного пути оканчиваются на ά-мотонейронах двигательных ядер III - VII и IX - XII черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре. Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь (речедвигательный центр Брока, поле 44). В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.

Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения – в ассоциативной коре больших полушарий, программы движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения. Межполушарные взаимоотношения у человека проявляются в двух формах – функциональной асимметрии больших полушарий и совместной их деятельности.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга. При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения. В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.




Рис.3. Асимметрия полушарий мозга.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными. Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.





Рис.4. Основные зоны коры больших полушарий.





Рис.5. Речевые зоны коры.