Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. 5-е изд

Вид материалаКнига
Подобный материал:
1   2   3   4   5   6   7   8   9   10   ...   62


"Аналогичным образом нельзя утверждать, что тела, с помощью которых мы измеряем предметы, не воздействуют на эти предметы. Подобное утверждение не является строгим и само по себе не оправданно".


Это замечание придется потом вспомнить в связи с эйнштейновской позицией в отношении квантовой механики. За ним следует вывод:


69


"Поистине никогда и ни при каких условиях понятия не могут быть логическими производными ощущений. Но дидактические и эвристические цели делают такое представление неизбежным. Мораль: если вовсе не грешить против разума, нельзя вообще ни к чему прийти. Иначе говоря, нельзя построить дом или мост, если не пользоваться строительными лесами, которые, конечно, не являются частью сооружения".


Вывод, несколько неожиданный для последователя великих рационалистов XVII-XVIII вв. Они были твердо убеждены: грешить против разума - значит грешить против истины. Все дело в том, что Эйнштейн был не столько последователем, сколько преемником Декарта и Спинозы. Он знал этих мыслителей, но он также знал Гёте с его "теория, друг мой, сера, но зелено вечное дерево жизни". Эйнштейн знал, что непосредственные впечатления бытия преображаются в абстрактные понятия теории сложным путем, включающим игнорирование некоторых сторон реальности. Высшее выражение "безгрешного" рационализма - всеведущее существо Лапласа, знающее положения и скорости всех частиц Вселенной, для рационалистов XVII в. было будущим их концепции, а для рационалистов XIX-XX вв.- прошлым.


Как бы то ни было, в XIX в. с его установившимися атомистическими представлениями о веществе и волновыми представлениями о свете природа уже не была прикладной геометрией. Отсюда сделали вывод, что геометрия - это не абстрактно выраженная природа, и дошли до априорности геометрии либо до ее условности.


Болезни роста излечиваются дальнейшим ростом. Иллюзии априорности и условности геометрии исчезли с дальнейшим развитием аксиоматизации и с дальнейшим развитием представлений о физических прообразах геометрии.


Прежде всего в геометрии выросли большие, разветвленные системы, которые отличались некоторыми исходными допущениями. Появление различных по исходным постулатам геометрических систем подорвало корни представления об априорной геометрии и априорном понятии пространства. Был поставлен вопрос: какова геометрия действительного мира? Имеет ли этот вопрос смысл? Эйнштейн рассматривает, во-первых, ответ Гельмгольца: понятиям геометрии соответствуют реальные объекты, и геометрические утверждения представляют собой в последнем счете утверждения о реальных телах.


70


Другая точка зрения высказана Пуанкаре: содержание геометрии условно. Эйнштейн присоединяется к ответу Гельмгольца и говорит, что без такой точки зрения практически было бы невозможно подойти к теории относительности.


Как мы увидим позже, теория относительности представляет собой попытку ответить на вопрос, какая геометрия соответствует объективной действительности, описывает действительность наиболее точным образом. Тем самым геометрия теряет характерное для логики и математики в целом безразличие к физической природе своих объектов и к физической истинности своих суждений. "Чистая математика, - писал Бертран Рассел, - целиком состоит из утверждений типа: если некоторое предложение справедливо в отношении данного объекта, то в отношении его справедливо некоторое другое предложение. Существенно здесь, во-первых, игнорирование вопроса, справедливо ли первое предложение, и, во-вторых, игнорирование природы объекта... Математика может быть определена как наука, в которой мы никогда не знаем, о чем говорим, и никогда не знаем, верно ли то, что мы говорим". Это игнорирование онтологической стороны дела теперь становится уже условным. Существуют различные пути для вывода второго предложения из первого, выбор пути зависит от содержания первого предложения и от природы объекта, к которому оно относится. Математика - в данном случае геометрия - обретает онтологическую, физическую содержательность. Для Эйнштейна это значит, что содержание математических суждений должно в принципе допускать экспериментальную проверку.


Мы видим, что концепция Эйнштейна направлена как против априоризма и против представления о чисто условных математических истинах, так и против примитивной идеи тождества геометрических соотношений с "очевидными" и непреложными физическими соотношениями. Логические конструкции пе дают априорных результатов при познании природы, они нуждаются в сопоставлении с экспериментом и в соответствии с ним обретают физическую содержательность. Априорной очевидности не существует. Но и эмпирическая очевидность - иллюзия. Геометрические понятия получают все новое и новое физическое содержание и при этом сами меняются. Все это характеризует путь, которым шел


71


Эйнштейн при создании и развитии теории относительности. Но вместе с тем сказанное характеризует эффект математической и физической подготовки Эйнштейна в юности. Все стало на свое место позже, после построения теории относительности, но строительные материалы заготовлялись раньше.


Чтобы охарактеризовать эти материалы, нужно указать, в каком виде они вошли в постройку, какие математические сведения оказались необходимыми Эйнштейну впоследствии. Повторим несколько систематичнее пояснения математических понятий, уже мелькавших раньше.


Вся совокупность теорем наиболее простой и элементарной геометрии, которую изучают в средней школе, основана па неизменной длине отрезка, переносимого с места на место и измеряемого в различных положениях. На этом следует остановиться, так как понятие неизменной длины отрезка подводит к понятиям, которые впоследствии понадобятся для изложения основ теории относительности.


Длина отрезка прямой - это расстояние между его концами. Мы определяем положение каждой точки через расстояния между нею и другими точками, а расстояния - через положения точек. Положение точки - относительное понятие, оно может быть определенным, если указано, по отношению к каким другим точкам, линиям и поверхностям оно определено. Даже такие, не связанные с количественным измерением определения положения, как "сверху", "снизу", "справа", "впереди", тоже требуют указания на другие точки, линии и поверхности, по отношению к которым данная точка находится "снизу", "впереди" и т.д. Декарт нашел способ, с помощью которого можно количественно определить положение точки в пространстве. Если это пространство - плоскость, то нужно провести через некоторую точку на плоскости - начало отсчета - две взаимно перпендикулярные прямые, затем опустить на эти прямые (они называются осями координат) перпендикуляры из данной точки. Длины этих перпендикуляров - координаты данной точки - определяют ее положение на плоскости. Пространство, в котором положение точки определяется двумя координатами, называется двумерным. Оно не обязательно должно быть плоским и может быть кривой поверхностью, например поверхностью сферы. Такова поверхность Земли, положение на этой поверхности определяется расстоянием от полюса (или от экватора) и от меридиана, принятого за начальный. Здесь в такой координатной системе (системе отсчета) осями служат уже не прямые, а кривые линии.


Чтобы определить положение точки с помощью декартовых координат в трехмерном пространстве, понадобится система, состоящая из трех взаимно перпендикулярных плоскостей. Положение точки определяется тремя координатами - длинами опущенных на эти плоскости перпендикуляров.


Мы можем заменить данную декартову систему координат иной декартовой системой, выбрав новое начало координат или проведя в ином направлении взаимно перпендикулярные оси. Такая замена называется преобразованием координат. Она меняет значения координат, но не меняет длины отрезка. Если нам известны координаты одного конца отрезка и координаты другого конца отрезка, мы можем вычислить его длину. Перейдя к иной системе отсчета, получив новые значения координат концов отрезка и вычислив вновь его длину, мы получим ту же самую величину, что и при измерении положения концов отрезка в старой координатной системе. Длина отрезка принадлежит к числу величин, которые не меняются при преобразовании координат и называются инвариантами таких преобразований.


Когда знакомишься с этими геометрическими понятиями, воображение рисует их физические прообразы. Отрезок представляется нам, например, штангой - двумя металлическими шарами, которые сохраняют между собой одно и то же расстояние - они образуют жесткую механическую систему. Координатные оси на плоскости представляются двумя перпендикулярными прямыми, начерченными на столе, на полу или на земле. Под понятие трехмерной системы отсчета мы подставляем конкретный образ трех бесконечно простирающихся плоскостей - что-то вроде бесконечного пола и двух бесконечных перпендикулярных стенок, прикрепленных к кораблю, на котором мы путешествуем, или к Земле, Солнцу, Сириусу и т.д. Нам кажется, что длина штанги (или размеры и форма другой, более сложной материальной системы) не меняется при измерении координат ее точек в системе корабля, в системе Земли и т.д., т.е. что мы можем взять любую начальную точку отсчета, чтобы описать геометри-


73


ческие свойства реальных тел. Такую равноправность всех точек при выборе начала координат мы называем однородностью окружающего нас пространства. Мы можем теперь сказать, что Коперник, лишивший систему координат, связанную с Землей, ее привилегированного характера, показал однородность мирового пространства. Но при этом мы уже, по существу, утверждаем, что при переходе к иной системе координат (Коперник прикрепил ее к Солнцу) не меняются не только форма и размеры тел, но и их поведение.


Соответственно мы приходим к представлению о равноправности направлений в окружающем нас пространстве - такая равноправность называется изотропностью. Когда древнегреческие мыслители отказались от мысли о падении антиподов с Земли "вниз", т.е. о привилегированном направлении, они, по существу, открыли, что в системе отсчета, где одна из осей направлена "вверх", и в системе отсчета, где эта ось направлена "вниз", не меняются величины, характеризующие не только форму и размеры, но и поведение тел.


Вернемся к геометрическим инвариантам. Как было уже сказано, геометрия, которую проходят в средней школе, основана на допущении: длина отрезка не меняется при его переносе. Эта длина вычисляется с помощью некоторой формулы по заданным координатам концов отрезка. Координаты, как уже говорилось, меняются в зависимости от выбора системы отсчета, но длина отрезка остается неизменной. Она служит инвариантом координатных преобразований. Мы можем представить себе иную формулу, связывающую длину отрезка с координатами его концов. Мы можем изменить и другие основные допущения геометрии и при этом не приходим к противоречиям. Такая возможность избирать различные исходные допущения и не приходить при этом к противоречиям нанесла сильный удар идее априорного пространства.


Кант считал априорными, присущими сознанию, независимыми от опыта соотношения геометрии Евклида. В III в. до н. э. Евклид вывел всю совокупность теорем геометрии из нескольких независимых одна от другой аксиом. Среди последних находился так называемый постулат параллельных, эквивалентный утверждению, что из точки, взятой вне прямой, можно провести только одпу прямую, не пересекающуюся с данной. Из этого постула-


74


та выводится равенство суммы углов треугольника двум прямым углам, параллельность перпендикуляров к одной и той же прямой и ряд других теорем. Из него выводится, в частности, формула, позволяющая найти длину отрезка, если заданы координаты его концов.


В 1826 г. Н. И. Лобачевский доказал, что может существовать иная, неевклидова геометрия, отказывающаяся от постулата параллельных. В геометрии Лобачевского через точку, взятую вне прямой, можно провести бесчисленное множество прямых, не пересекающихся с данной. Сумма углов треугольника в геометрии Лобачевского меньше двух прямых углов, перпендикуляры к прямой расходятся. Длина отрезка определяется в ней по координатам концов иначе, чем в геометрии Евклида.


Тридцать лет спустя Бернгард Риман заменил евклидов постулат параллельных утверждением, что через точку, взятую вне прямой, нельзя провести ни одной прямой, не пересекающей данную прямую. Иначе говоря, в геометрии Римана параллельных прямых нет. В геометрии Римана сумма углов треугольника нe равна двум прямым углам, как в геометрии Евклида, и не меньше их, как в геометрии Лобачевского, а больше двух прямых углов. Перпендикуляры к прямой не параллельны и не расходятся; в геометрии Римана они сходятся. Длина отрезка определяется по координатам его концов иначе, чем в геометрии Евклида, и иначе, чем в геометрии Лобачевского.


Эти парадоксальные утверждения геометрии Лобачевского и геометрии Римана приобретают простой и наглядный смысл, если мы нарисуем геометрические фигуры не на плоскости, а на кривой поверхности. Возьмем поверхность сферы. Роль прямых на плоскости здесь будут играть кратчайшие дуги, примером которых могут служить дуги меридианов на поверхности Земли или дуги экватора. Но каждые два меридиана обязательно пересекутся, следовательно, на поверхности сферы нельзя найти параллельные кратчайшие линии. Перпендикуляры к экватору - ими как раз и являются меридианы - сходятся в полюсе. Нарисовав на поверхности сферы треугольник, образованный дугой экватора и двумя меридианами, т.е. с вершиной в полюсе, мы убедимся, что сумма углов этого треугольника больше двух прямых углов. Длина кратчайшего отрезка на поверхности сферы определяется иначе, иной формулой, чем длина кратчайшего отрезка на плоскости.


75


Можно найти кривую поверхность, па которой, при замене прямых кратчайшими на этой поверхности кривыми, так называемыми геодезическими линиями, все соотношения подчиняются геометрии Лобачевского: через точку, взятую вне такой линии, можно провести множество геодезических линий, не пересекающихся с данной, сумма углов образованного такими линиями треугольника меньше двух прямых углов, перпендикуляры расходятся и т.д.


Можно заменить переход от евклидовой геометрии к неевклидовой геометрии на плоскости - искривлением этой плоскости.


Но как представить себе неевклидову геометрию в пространстве переход от трехмерной евклидовой геометрии к трехмерной неевклидовой геометрии? Зрительного образа искривления трехмерного пространства мы не находим. Но мы можем считать искривлением трехмерного пространства всякий переход от евклидовых геометрических соотношений в этом пространстве к неевклидовым.


Когда Эйнштейн знакомился с евклидовой и неевклидовой геометрией на лекциях по математике в Цюрихе, он не представлял себе, какие именно геометрические понятия позволят найти и описать новую физическую теорию. Только через много лет он увидел, что интересовавшая его с отрочества проблема относительности движения имеет непосредственное отношение к координатным преобразованиям и кривизне пространства.


Для этого необходимо было придать понятию пространства более широкий смысл.


Эйнштейн подошел к трехмерному пространству и к описывающей его свойства трехмерной евклидовой геометрии с критерием физической содержательности. Существуют ли физические процессы, укладывающиеся в соотношения трехмерной евклидовой геометрии? Классическая физика допускала существование таких процессов. Созданная Эйнштейном теория относительности отрицает их возможность. Она приписывает физическую содержательность четырехмерной геометрии.


Критерии выбора научной теории и основы классической физики


Природа в ее простой истине является более великой и прекрасной, чем любое создание человеческих рук, чем все иллюзии сотворенного духа.

Роберт Майер


В автобиографии 1949 г. Эйнштейн пишет о двух критериях выбора научной теории. Первый критерий - "внешнего оправдания": теория должна согласоваться с опытом. Это требование очевидно. Но применение его затрудняется тем обстоятельством, что теория часто может быть сохранена с помощью добавочных предположений. Второй критерий Эйнштейн указывает несколько неопределенным образом. Это "внутреннее совершенство" теории, ее "естественность", отсутствие произвола при выборе данной теории из числа примерно равноценных теорий.


Эйнштейн считает высказанное им положение о критериях лишь намеком на определение и говорит, что не способен сразу, а быть может, вообще не в состоянии заменить намеки более точными формулировками. Впрочем, говорит Эйнштейн, авгуры почти всегда единодушно судят как о "внешнем оправдании" теории, так и о ее "внутреннем совершенстве".


Прежде всего отметим, что указанные критерии в известном смысле едины, что, по существу, оба они выражают одно и то же. Они служат критериями для определения онтологической ценности теории, ее соответствия действительности. Это не значит, что не может быть чисто формальною, эстетического критерия изящества, простоты, общности и т.д. Но у Эйнштейна эти характеристики не обладают самостоятельным значением. Они помогают точнее определить истинность теории.


77


Проведем одну параллель, чтобы пояснить высказанную только что мысль. Некоторая гидростанция своими архитектурными формами и компоновкой создает впечатление стройности, легкости, естественности, изящества. Это впечатление имеет самостоятельную эстетическую ценность. По вместе с тем оно является признаком максимальною соответствия между сооружениями и рельефом местности.


Эйнштейн с его удивительно тонким ощущением гармонии, естественности и, как он говорил, "музыкальности" научной мысли придавал особое значение эстетическому впечатлению, зависящему от "внутреннего совершенства" теории. Для Эйнштейна критерий "внутреннего совершенства" становится критерием выбора однозначной теории, отображающей действительность. Теория, в наибольшей степени обладающая "внутренним совершенством", в наименьшей степени исходит из произвольных предположений, не вытекающих однозначным образом из других. Она в большей степени, чем другие теории, объясняет устройство и развитие мира исходя из единых универсальных закономерностей бытия. Но для Эйнштейна это значит, что теория ближе подходит к объективному ratio Вселенной.


Формально критерий внутреннего совершенства очень близок к критерию математического изящества в том виде, в каком его определял Пуанкаре. Последний называл изящным математическое построение, позволяющее вывести наибольшее число положений из наименьшего числа посылок. Он сравнивал такое построение с античной колоннадой, легко и естественно несущей на себе фронтон. Действительно, в архитектуре (прежде всего в античной) наиболее отчетливо выражается однозначность решения: из большого числа возможных архитектурных форм лишь одна соответствует минимальному числу дополнительных опор, лишь одна решает статическую задачу, минимально дополняя основной замысел сооружения. Она и является самой изящной.


У Эйнштейна критерий внутреннего совершенства шире указанного требования минимального числа дополнительных опор. Такое требование - только одна из компонент внутреннего совершенства. Но суть дела не в этом. У Эйнштейна математическое изящество приобретает гносеологический смысл: изящество теории отражает ее близость к действительному миру.


78


Теория относительности оказалась, как мы увидим, наиболее изящной концепцией из числа концепций, выдвинутых для объяснения электродинамических и оптических фактов. Теоретические построения Эйнштейна отличаются большим изяществом. При изложении теоретической физики Эйнштейн, вслед за Больцманом, советовал "оставить изящество портным и сапожникам". Но этот совет относился к изложению, и "изящество" здесь понималось по-иному. При выборе научной теории из числа многих теорий, соответствующих наблюдениям (наблюдения, согласно Эйнштейну, не определяют теории однозначным образом), сознание действует активно и исходит из критериев внутреннего совершенства, в частности из максимального изящества теории, из минимального числа ее независимых посылок.


Как только Эйнштейн подходит к ответу на вопрос, в чем же ценность изящества, минимального числа независимых посылок и т.д., сразу становится ясной грань между эпистемологическими позициями Эйнштейна и Пуанкаре. Для Пуанкаре критерий изящества последний, изящество отнюдь не рассматривается как некий результат или симптом более глубоких свойств теории. Для Эйнштейна изящество - симптом достоверности, объективной достоверности теории, т.е. свойства, которое вообще не может фигурировать в концепциях априорного или конвенционального происхождения науки.


Теории, исходящие из наименьшего числа посылок, ближе к действительности, потому что мир представляет собой единую систему тел, поведение которых взаимно обусловлено, потому что в мире нет оборванных концов причинной цепи, с которых нужно начинать анализ, нет звеньев, относительно которых нельзя спросить "почему", и приходится их брать как исходные, самостоятельные, независимые. Отсутствие таких звеньев, единство мира, универсальный, всеобъемлющий характер единой цепи причин и следствий - в этом причина онтологической ценности изящных теорий. Они исходят из наименьшего числа независимых постулатов и поэтому ближе других к реальному единству мира, отражают его наиболее адекватным образом. Упорядоченность, регулярность, рациональность, детерминированность мира - его объективные свойства. Они - не априорная рамка познания, в которую укладываются восприятия, а являются объективными закономерностями, что бы об этом ни думали сторонники априорного происхождения научных понятий и законов. Когда теория выводит свои понятия из наименьшего числа исходных закономерностей, она приближается к реальному единству Вселенной.


79


Это реальное единство проявляется в сохранении некоторых соотношений при переходе из одной точки пространства в другую и от одного момента времени к другому. Именно эта неизменность законов бытия, независимость их действия от смещений в пространстве и времени была исходной идеей на пути, приведшем к теории относительности. "Внутреннее совершенство" теории означает ее близость к реальному единству мира. Когда Эйнштейн стремился написать уравнения, выражающие законы бытия и ковариантные (т.е. сохраняющие свою справедливость) при различных смещениях в пространстве и времени, он искал максимальное "внутреннее совершенство" теории, но по существу оно означало максимальное соответствие между теорией и объективным единством, детерминированностью мира, сохранением физических соотношений, закономерной связью, охватывающей всю бесконечную Вселенную.