Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. 5-е изд

Вид материалаКнига
Подобный материал:
1   ...   39   40   41   42   43   44   45   46   ...   62


3 Kepler I. Opera orania, t. I. Frankfurt, 1858, p. 423.


Эти строки нуждаются в пояснении. "Прямая противоположность, лишенная посредствующих звеньев", - это интегральное представление, указывающее на качественно различные полюсы: абсолютное начало и абсолютный конец движения из чего-то во что-то. Такое интегральное представление приписывает началу и концу процесса некоторое субстанциональное (тело возникает и исчезает) или качественное различие. Полюсы движения или логического сопоставления определяются один по от-


457


ношению к другому словом "иное". Что же такое "опосредствующие звенья?" Это непрерывный ряд пространственных положений, скоростей, ускорений и бесконечное множество точек и мгновений, которым соответствуют определенные состояния движущихся тел. Сопоставляемые предметы, свойства и состояния, если их определять через такие "опосредствующие звенья", характеризуются мерой. Они могут занимать то или другое место в ряде "опосредствующих звеньев", они могут быть больше или меньше, и этим определяется их отличие.


Генезис математического естествознания, складывавшийся из физикализации математики и математизации физики на основе количественных законов бытия, связан, таким образом, с дифференциальным представлением о движении. Основные успехи естествознания в XVII- XIX вв. были результатом преимущественного внимания к бесконечно малым областям. "От той точности, - писал Риман, - с которой нам удается проследить явления в бесконечно малом, существенно зависит наше знание причинных связей. Успехи в познании механизма внешнего мира, достигнутые на протяжении последних столетий обусловлены почти исключительно благодаря точности того построения, которое стало возможным в результате открытия анализа бесконечно малых, применения основных простых понятий, которые были введены Архимедом, Галилеем и Ньютоном и которыми пользуется современная физика" [4].


4 Риман Б. О гипотезах, лежащих в основании геометрии. - Избр. произв. М.; Л., 1948, с. 291.


Преимущественный интерес к бесконечно малому существовал до нашего времени. Сейчас преимущественного интереса уже нет: в современной теории элементарных частиц с анализом их поведения во внутриядерных областях связан анализ космических процессов. Для классической науки и ее генезиса в рамках научной революции XVI-XVII вв. дифференциальное представление было сквозным и центральным направлением физической мысли. Он связан с перечисленными выше основными итогами указанной революции. В том числе - с ньютоновым динамизмом. Приложенная к телу сила как феноменологическая причина его движения позволяет обойтись без анализа интегральной космической обстановки,


458


переносит центр тяжести в локальные пункты, в здесь-теперь. В пределах первой задачи Ньютона - определения положения тел по заданным силам, интегральные ситуации - это результат дифференциальных законов. Противоположная задача - выяснение происхождения сил из зависимости от начальных условий, первоначального толчка - все это переносится в область "пятен на Солнце", в область, где сконцентрировались нерешенные вопросы, ставшие импульсом для дальнейшей эволюции классической науки, эволюции, приведшей к ее неклассическому финалу.


Подобный взгляд на идеи классической науки, на творчество Ньютона, на соотношение позитивной компоненты познания и его вопрошающей компоненты заставляет несколько пересмотреть традиционное понимание "классицизма" науки, созданной в XVI-XVII вв. Фигура Ньютона перестает казаться фигурой мыслителя, нашедшего непоколебимые устои представления о мире. Ньютон был революционером не только потому, что завершил научную революцию XVI-XVII вв., но и потому, что созданная в XVII в. наука, в силу диалога между ее позитивными утверждениями и ее апориями, сохранила незатухающую трансформацию своих основных положений.


Это касается и рассматриваемой здесь проблемы отношения локального здесь-теперь к вселенскому вне-здесь-теперь, отношения микрокосма к космосу. Фундаментальная коллизия классической науки вытекает из различного уровня однозначности в двух основных направлениях: в механике тел, движущихся под влиянием приложенных сил, и в том, что было началом теории поля. Эти две задачи - "десница" и "шуйца" Ньютона - сами были в некотором смысле антецедентом неклассической коллизии движения и поля; Эйнштейн, говоря о ней, перешел от "десницы" и "шуйцы" к двум "частям строения" общей теории относительности: "мраморной" - тензору кривизны пространства-времени и неполноценной "деревянной части" - тензору энергии-импульса [5].


5 См.: Эйнштейн, 4, 217.


459


Теория поля XVIII-XIX вв. унаследовала характерную ньютонову оторванность от механики. Последняя управляла в микромире движениями атомов и молекул, в XVIII в. она здесь претендовала на всевластие, в XIX в. осознала некоторую автономию управляемых областей, но в область, где рассматривали природу сил, природу силового поля, механика входила с трудом, здесь авансцену занимали континуальные представления, и Планк был прав, когда сказал об эфире, что это дитя классической физики, зачатое в скорби... Конечные образы статического бытия, атомы и их конфигурации, не сливались с континуальными и инфинитезимальными представлениями аналитической механики и теории поля. Глубокая трещина, разделившая атомистику и континуум, тела и поле, не могла быть полностью устранена статистической континуализацией атомистики. Она была устранена атомизацией поля, установлением его дискретности и континуализацией частицы, открытием "волн материи" в рамках неклассической физики.


Подготовкой неклассического финала классической физики был последовательный переход от локальных ситуаций к более обширным в связи с поисками начальных условий, определяющих поведение изолированной частицы или изолированной системы частиц. Исходным пунктом и здесь была "шуйца" Ньютона, нерасшифрованность силы, нереализованная до поры до времени тяга к включению космических условий в объяснение локальных ситуаций. К "шуйце" принадлежит упоминавшаяся уже ньютоновская концепция первоначального толчка. Схема, предложенная Кантом во "Всеобщей естественной истории и теории неба", апеллирует к прошлому, к процессам, происходившим до образования солнечной системы, к возникшей тогда первичной туманности. Иначе говоря, причина тангенциальной скорости лежит в более широкой во времени системе. И в более широкой в пространстве: схема Канта охватывает весь космос, где образуются первичные туманности. Но переход к более широким системам не ограничивается объяснением первоначального толчка. Здесь мы встречаем весьма общую тенденцию классической физики, которая вела к новой научной революции - ровеснице XX столетия. Приведем отрывок из статьи М. Борна, посвященной подготовке неклассической науки в новой эпохе в физике.


460


"Путь к этому был расчищен в результате длительного развития науки, в течение которого выявилась недостаточность классической механики для рассмотрения поведения вещества. Дифференциальные уравнения механики сами по себе не определяют движения полностью - нужно задать еще начальные условия. Например, эти уравнения объясняют эллиптичность планетных орбит, но отнюдь не позволяют понять, почему существуют именно данные орбиты, а не какие-то другие. Однако реально существующие орбиты подчиняются вполне определенным закономерностям, например известному закону Боде. Объяснение этих закономерностей ищут в предыстории системы, которая рассматривается как проблема космогонии, до сих пор еще в высшей степени дискуссионная. В атомной области неполнота дифференциальных уравнений является еще более существенной. В кинетической теории газов впервые стало ясно, что необходимо сделать какие-то новые предположения о распределении атомов в данный момент времени, и эти предположения оказались важнее уравнений движения: истинные траектории частиц не играют никакой роли; существенна только полная энергия, которая определяет наблюдаемые нами средние значения. Механические движения обратимы, поэтому для объяснения необратимости физических и химических процессов требовались новые предположения статистического характера. Статистическая механика проложила дорогу новой, квантовой эпохе" [6].


6 Вопросы причинности в квантовой механике. М., 1955, с. 104; см. также: Born M.~ Proc. Phys. Soc, 1953, 66, N 402 А, р. 501.


Этот большой отрывок очень отчетливо раскрывает роль поисков начальных условий, т.е. включения более широкой пространственно-временной системы для переноса парадигм классической физики в другие области, т.е. для генезиса классической науки. Следует подчеркнуть, что переносятся не только позитивные парадигмы, но и вопросы, апории, противоречия классической физики. В таких поисках и в таком включении значительную роль играло философское обобщение науки. Оно оказывается существенной стороной выявления "пятен на Солнце", не только исходных позиций классической науки - итогов научной революции XVI-XVII вв., но и последующего, послереволюционного развития классической науки в XIX в. и ее перехода в неклассическую в начале XX в.


461


В науке XVII-XVIII вв. и даже позже, в науке XIX в., философское обобщение не было достаточно явной и непосредственной движущей силой естествознания в процессе осознания "пятен на Солнце" и в поисках их устранения. Кантовские коррективы ньютоновой схемы мироздания были очень ярким, но не столь уж частым примером такой функции философского обобщения. Философия XVII-XVIII вв. и даже философия XIX в. была в значительной мере обобщением того, что Энгельс, говоря о Гегеле, назвал естествознанием "старой ныотоново-линнеевской школы" [7]. Объединение имен Ньютона и Линнея подчеркивает позитивную парадигму - презумпцию неизменности и непротиворечивости бытия в науке XVII-XVIII вв.


7 Маркс К., Энгельс Ф. Соч., т. 20, с. 565.


Преимущественное внимание к позитивной парадигме и некоторое игнорирование апорий классической науки заметно даже у Гегеля, хотя в целом его философия отразила новый этап, когда ряд естественнонаучных открытий продемонстрировал указанные апории и создал немало новых. Но какими бы косвенными и неявными ни были воздействия философского обобщения на развитие естествознания, такое воздействие было широким. Оно происходило не только и даже не столько в форме логических дедукций, сколько через общественную и научную психологию, через последовательно усугублявшееся понимание, учет и ощущение живых апорий бытия. Но были и прямые, осознанные переходы от философских дедукций к констатации и попыткам решения нерешенных вопросов науки - негативной и вопрошающей компоненты научной революции. Такие переходы были лишь явным проявлением общей связи между развитием естествознания и философскими идеями. "Всеобщая естественная история и теория неба" вовсе не отделена от основного пути развития немецкой классической философии - одного из основных фарватеров философского обобщения научной революции XVI-XVII вв.


462


Сейчас следует перейти к формам такого обобщения с указанной только что точки зрения, рассматривая его как движущую силу той трансформации картины мира, исходные пункты которой уже содержались в итогах научной революции XVI-XVII вв. В докритических натурфилософских работах Канта, от "Мыслей об истинной оценке живых сил" (1746) до работы "О первом основании сторон в пространстве" (1768), мы встречаем ту же тенденцию, что и в "Естественной истории неба"; это попытки философского обобщения апорий классической науки. Но и в критический период Кант, так или иначе, прямо или косвенно, шел по указанному пути. Учение об антиномиях - это философский эквивалент неразрешимых до конца противоречий науки. В классической физике понятие бесконечности было точкой перехода от внешнего оправдания, от экспериментальной обоснованности теорий, основывающейся на наблюдении конечных объектов и процессов, к внутреннему совершенству, к выведению теории из более общих принципов, с презумпцией неограниченной, бесконечной применимости таких принципов. С антиномиями была связана (в качестве абсолютизации, "одеревенения" витка познания) кантианская "критическая" концепция бесконечности. У Гегеля решение вопроса о бесконечности иное, не критическое, а диалектическое. "Истинная бесконечность", как и другие понятия, введенные Гегелем, бесконечность, присутствующая в каждом конечном элементе, была примирением указанных эйнштейновских критериев научной теории, вернее, программой их реализации в развитии науки. Нужно сказать, что немецкая классическая философия обладала очень существенной "обратной связью", обратным воздействием на естествознание. Но о таком обратном воздействии и его значении для выявления и решения апорий классической науки можно было судить лишь post facium, когда апории классической науки привели к ее неклассическому эпилогу.


Является ли этот эпилог завершением классической физики? Завершил ли Эйнштейн то, что было создано Ньютоном?


Ответ на этот вопрос не может быть простым и определенным. Прежде всего, назвав теорию относительности завершением классической физики, мы убедимся, что при этом меняется смысл и понятия "завершение" и понятия "классическая физика". Вообще, с какой бы стороны мы ни рассматривали теорию относительности, какой бы эпитет ей ни присваивали, в какой бы класс ее ни помещали, мы сталкиваемся с известной деформацией вклю-


463


чающего класса. К Эйнштейну применимо то, что Е. В. Тарле когда-то говорил о Ф. М. Достоевском: если вы его отнесете к какому-то "изму", поставите на какую-то полку, он изменит смысл "изма", деформирует полку. Такая ситуация в случае Эйнштейна зависит не только от масштаба творческого гения, она очень характерна для неклассической науки. Последняя в очень явной форме связывает частные концепции с общими принципами (уже упоминавшийся эйнштейновский критерий "внутреннего совершенства" физической теории) и при этом в значительной мере меняет содержание общих принципов. С другой стороны, неклассическая наука уже не столько в релятивистском, сколько в квантовом духе меняет объект определения при его взаимодействии с определяющим классическим прибором, т.е. в данном случае с принципиальной общей теоретической полкой, на которую укладывается новая теория. Эта весьма общая неопределенность распространяется не только на физику атома и даже не только на природу в целом, но и на познание природы, на познание как исторический процесс. Рембрандтовская дымка неопределенности в современной квантово-релятивистской ретроспекции распространяется на классическую физику. Мы находим в ней редуцированные неявные, стоящие за кулисами апории непрерывности и дискретности, о которых шла речь в предыдущем очерке; это приложимо также к особенностям научного мышления, к методам науки, к отношению между ее исходными посылками и особенно - к соотношению позитивной, утверждающей, констатирующей стороны науки и вопрошающей, формулирующей все новые и новые модификации сквозных вопросов.


В классической науке апории, вопросы, ответы, вызывающие новые вопросы, - это отнюдь не отблеск позднейшего стиля познания, не результат ретроспекции. Это - ее основа. Гносеологическая ценность неклассической ретроспекции состоит в том, что она делает отчетливыми наиболее общие, исторически инвариантные определения познания. Познание всегда было и всегда будет диалогом человека с природой и диалогом человека с самим собой. Диалогом, где ни один фундаментальный вопрос не получает окончательного, закрывающего диалог ответа бея существенного изменения аредмета беседы. В этом и состоит определение фундаментальных


464


вопросов - они модифицируют, конкретизируют и обобщают сквозное, неисчезающее содержание знания. В неизбывных коллизиях диалога, в апориях познания отображается бесконечность постижения неисчерпаемой объективной истины. Эта бесконечность - истинная бесконечность, воплощенная, как это знал Гегель, в своих конечных элементах.


Как реализовалась сквозная диалогичность познания в классической науке XVI-XIX вв.?


Вернемся к уже высказанной характеристике такой диалогичности. Уже говорилось, что классическая наука выросла в диалоге с перипатетической мыслью. В том, что можно назвать диалогом Ньютона с Аристотелем. Не с "Аристотелем в тонзуре", не с официальной, воинствующей перипатетикой, окружившей себя частоколом канонизированных текстов и инквизиционных допросов, а с перипатетической мыслью, которая была куртуазней своих адептов и могла быть стороной не в указанных допросах, а стороной диалога в смысле Платона, т.е. процесса и метода познания. Перипатетическая концепция мироздания опиралась на схему неподвижных естественных мест, неподвижного центра мирового пространства и его неподвижных границ. Эта статическая мировая гармония была первым звеном исторической цепи инвариантов, которая является осью всей истории науки: инвариантные положения тел (абсолютное пространство), сохраняющиеся импульсы (инерция), сохранение энергии, сохранение направления энергетических переходов (энтропия), сохранение энергии-импульса (теория относительности) и иные, более сложные инварианты, из которых каждый ограничивает и релятивирует другие. Статическая мировая гармония с самого начала приводила к апориям, выражавшим по существу ее неотделимость от динамического взгляда на мир и неизбежную эволюцию инвариантов. Комментаторы Аристотеля немало потрудились над попытками выхода из апории неподвижной схемы мироздания. Постоянство положения тел теряет смысл при переходе ко Вселенной. Эта апория, из которой искали выхода Иоанн Дамаскин, Симпликий, Филипон и другие комментаторы Аристотеля, была логически родственна античным логическим парадоксам включения типа парадокса Эпименида ("все критяне лжецы", - говорит критянин), Эвбулида ("произнесен-


465


ное мною высказывание ложно") и т.д. [8] Затруднения комментаторов имели место при попытках упорядочения и догматизации космологии Аристотеля и включения Вселенной в число объектов с фиксированным местом. Это были парадоксы стационарного бытия, как и парадоксы Зенона. Для Аристотеля эти апории были демонстрацией его диалога с самим собой, неуверенности, существования динамических по своим тенденциям "точек роста" внутри статической концепции. Вместе с тем апории Зенона были связаны с чувственно-эмпирической тенденцией в мышлении древних греков - "народа-художника", как назвал их Брюншвиг [9].


8 См.: Кузнецов В. Г. История философии для физиков и математиков. М., "Наука", 1974, с. 53-75.

9 См.: Brunschvig L. La philosophie de 1'esprit. Paris, 1049, p. 59.


Апория создавалась демонстрацией реальности движения - конкретными образами летящей стрелы, бегущего Аристотеля, художественно-логическим стилем мышления, прорывавшим идею статической гармонии. Логический субстрат апорий - понятие пребывания, точки, локализации приводит к отрицанию движения - выходил за рамки элейской тенденции Зенона, а выход из апории выводил античную мысль за рамки "монологической" перипатетики, говорил о ее диалогичности. Апории означали, что локальное пребывание, становясь эталоном космической гармонии, неограниченно распространяясь, выявляет свою недостаточность и требует динамики, динамических понятий. Аристотель становится на путь такого дополнения. В своих попытках выхода из апорий Зенона он присоединяет к бесконечному множеству пространственных положений стрелы, Ахиллеса, черепахи - бесконечное множество моментов времени. Иначе говоря, пространственное многообразие становится пространственно-временным. Но такая тенденция остается очень тихим аккомпанементом в рамках перипатетизма с его апологией пространственных положений как основы гармонии бытия. Не только его физической гармонии. Через историю перипатетизма приходит отождествление чисто пространственного положения с моральными критериями: то, что выше топографически, выше в иерархии религиозных и моральных ценностей. В Новое время моральные идеалы помещают во времени; как уже говорилось: Руссо - в прошлое, Вольтер - в будущее.


466


Для классической науки инварианты, на которых основана гармония бытия, теперь уже его динамическая гармония, - дифференциальные инварианты. Отныне основа гармонии бытия познается через представление движения от одной пространственно-временной локализации к другой, от одной точки и одного мгновения к другой точке и к другому мгновению. Бесконечность здесь фигурирует в качестве истинной бесконечности, реализующейся в своих конечных элементах.


Классическая наука, подобно перипатетической, возникла и развивалась в диалоге с собой, переплетавшемся с диалогами, в которых собеседниками были XVII в. и XIX в., прошлое и будущее. Тема диалогов была новой, но преемственно связанной с античными коллизиями мысли. Парадоксы Зенона стали парадоксами дифференциального исчисления, веявшими над уравнениями физики, а парадоксы включения, выдвинутые Эпименидом, Эвбулидом и другими, веяли над физикой начальных условий, которая уходила к бесконечно большому, ко Вселенной, ко Всему. В число парадоксов включения входил например, гравитационный парадокс (включение всей бесконечной Вселенной в качестве элемента множества гравитационных центров, т.е. в себя самое, приводит к бесконечным силам тяготения, действующим на каждое тело).


К таким же апориям вхождения приводили уже упоминавшиеся проблемы первоначального толчка, мгновенного дальнодействия и объяснения сил инерции. Отсутствие ответа (или, что то же самое, - теологический ответ) на вопрос о начальных условиях, определяющих форму планетных орбит, выводило тангенциальную слагающую из интегральной, охватывающей всю природу системы каузальных объяснений. Мгновенное дальнодействие - это брешь в пространственно-временной картине мира. Ньютоново объяснение центробежных сил и вообще сил инерции выводит пустое пространство за пределы мира как некую особую реальность.


Но все это не просто симптомы незавершенности классической картины мира, а пункты, где рациональный ответ требовал перехода к радикально новым представлениям.


467


Классическая наука подчиняет каждую локальную ситуацию дифференциальному закону, соединяющему бесконечно малые расстояния с бесконечно малыми моментами времени и с модификациями и сочетаниями этих бесконечно малых величин. В этом смысле классическая наука прежде всего опирается на презумпцию дифференциально упорядоченной природы, упорядоченности бесконечно малых процессов, протекающих в сколь угодно малых интервалах пространства и времени. Именно поэтому центр тяжести исследований в главном русле науки XVII-XIX вв. - это анализ бесконечно малых величин и бесконечно малых по своим пространственно-временным масштабам процессов. Но, как мы видели, в развитии классической физики все время звучали иные, по преимуществу вопрошающие реплики. Внутренний диалог - свидетельство незавершенности классической науки - продолжался. Иногда он становился уже не символическим наименованием коллизий идей, а действительным диалогом. Таков был спор между Ньютоном и Кларком и другие эпизоды идейной борьбы XVIII - XIX вв. Переломным моментом в диалоге были "Экспериментальные исследования" Фарадея и еще больше "Трактат" Максвелла.