Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. 5-е изд
Вид материала | Книга |
- Московская Городская Педагогическая Гимназия Лаборатория №1505. Смерть и бессмертие, 171.98kb.
- Жизнь, смерть, бессмертие человека, 729.23kb.
- 1. Введение, 287.04kb.
- Реалистическая теория бессмертия, 110.65kb.
- Наша жизнь как ценность Круглый стол Цели мероприятия, 597.3kb.
- Севиндж Мамед Сулейман "жизнь, смерть, бессмертие", 535.47kb.
- …человек уходит из жизни, как выходят из трамвая: на его уход обращают внимание те,, 87.04kb.
- Учебное пособие Благовещенск Издательство бгпу 2010, 7595.36kb.
- Биография ученого - это образ его мышления, генезис идей, творческая продуктивность., 9337.25kb.
- Боливия или смерть как шаг в бессмертие. , 161.5kb.
Почему исходные расстояния между небесными телами таковы, а не иные? Если выразить их в километрах или других произвольных единицах, вопрос несколько затушевывается, число, измеряющее расстояние между двумя небесными телами, может казаться произвольным, зависящим от взятых единиц длины - сантиметров, километров, световых лет. Но если взять какую-то естественную меру, например радиус Солнечной системы, и выразить расстояния между планетами с помощью этой меры, то произвол должен быть исключен, отношение ра-
361
диуса орбиты Нептуна к радиусу орбиты Марса должно получить причинное объяснение, должно быть выведено из теории образования Солнечной системы. Аналогичным образом, если выразить массы частиц не в граммах, а в их отношении к массе электрона, принятой за единицу, то эти массы, т.е. константы атомной и ядерной физики, явным образом требуют выведения из более общих закономерностей, из единой теории элементарных частиц, из картины образования частиц, которая должна дать отношения масс частиц различных типов.
Для Эйнштейна исключение из физики произвольных констант, объяснение их, выведение предельных для данной теории величин из более общей теории было стержневой тенденцией научного творчества. Именно такое исключение произвольных констант выявляет единство мироздания и его познаваемость.
Нам уже известно, что в своей автобиографии 1949 г. Эйнштейн выдвинул в качестве интуитивной догадки утверждение, что в идеальной картине мира не может быть произвольных постоянных. Теперь на этом следует остановиться подробней.
Скорость света, выраженная в сантиметрах, деленных на секунды, связана с этими произвольными единицами. Мы можем, по словам Эйнштейна, заменить секунду временем, в течение которого свет проходит единицу длины, а в качестве такой единицы взять вместо сантиметра, например, радиус электрона. Можно заменить грамм в качестве единицы массы массой электрона или другой частицы. Вообще можно полностью исключить из физики постоянные, выраженные в сантиметрах, граммах и секундах, целиком и полностью заменив их "естественными" единицами.
"Если представить себе это выполненным, то в основные уравнения физики будут входить только лишь "безразмерные" постоянные. Относительно этих последних мне бы хотелось высказать одно предложение, которое нельзя обосновать пока ни на чем другом, кроме веры в простоту и понятность природы. Предложение это следующее: таких произвольных постоянных не существует. Иначе говоря, природа устроена так, что ее законы в большей мере определяются уже чисто логическими требованиями настолько, что в выражения этих законов входят только постоянные, допускающие теоретическое
362
определение (т.е. такие постоянные, что их численные значения нельзя менять, не разрушая теории)" [8].
Итак, по мнению Эйнштейна, каждая безразмерная константа - отношение некоторой скорости к другой скорости, одной массы к другой массе (например, массы некоторой частицы к массе электрона), одной длины (длины волны или радиуса какой-то частицы или радиуса Вселенной) к другой длине (например, к радиусу электрона) - всегда может найти объяснение в какой-то теории, всегда в идеале можно ответить на вопрос "почему" в отношении такой константы, причем иная теория дает иное значение константы. Все это вытекает из "веры в простоту и понятность природы". Мы достаточно знакомы теперь с общими идеями Эйнштейна, чтобы понять смысл этих слов. Познание внешнего мира - это познание царящей в нем закономерности, причинной связи, охватывающей и объединяющей мир.
Эрнст Штраус, ассистент Эйнштейна в Принстоне в 1944-1948 гг., приводит в своих воспоминаниях очень важное замечание Эйнштейна. "Что меня, собственно, интересует, - говорил Эйнштейн, - это следующее: мог ли бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты?" [9].
8 Эйнштейн, 4, 281.
9 Helle Zeit, 72.
Что "бог" у Эйнштейна есть псевдоним рациональной связи процессов природы, - это нам уже известно. Что эта связь выражается в логической простоте, в наименьшем числе независимых постулатов, в естественности теории, отображающей мир с максимальной адекватностью, - это тоже известно. Вопрос состоит в том, приводит ли критерий логической простоты к однозначной картине мира? Могут ли существовать две в равной степени логически простые схемы, физически отличающиеся одна от другой? По-видимому, Эйнштейн склонялся к тому, что "бог не мог составить мир другим", что требование логической простоты определяет физическую картину мира однозначным образом. Приближаясь к объективной истине и приобретая все большую логическую простоту (за счет исключения эмпирических постоянных, не связанных логическим выведением и соответственно каузальной связью с другими постоянными), паука переходит ко все более точному описанию действительности. Сменяющие друг друга картины мира образуют сходящийся ряд.
363
Таким образом, когда Эйнштейн говорит о логических требованиях, речь идет о реальной объективной связи между законами природы. Каждый из них связан с другими, единая цепь причин - следствий охватывает космос и микромир. Именно благодаря такой связи можно логически вывести один закон из другого, причем в единую цепь входят количественные законы природы и константы. Феноменологические константы - радиусы планетных орбит, массы частиц и т.д. - не удовлетворяют критериям научной теории, выдвинутым Эйнштейном. В картине мира нет ничего чисто феноменологического, так же как ничего чисто априорного. Причинное объяснение может задержаться у границ данной теории, но оно не может остановиться, оно рано или поздно перешагнет эти границы.
Когда-то Кеплер, один из самых гениальных провозвестников каузального мышления нового времени, задал вопрос: "Почему они такие, а не иные", имея в виду количественные соотношения мироздания - расстояния между планетами Солнечной системы. Ответа на это нельзя было получить, и Кеплер погрузился в мистику чисел. Каузальное мышление, характерное для науки нового времени, достигло своей кульминации в творчестве Эйнштейна. Но и он не мог найти конкретного причинного объяснения всех физических постоянных, не мог построить теории, в которой все константы вытекают из физических условий. Исходные соотношения теории относительности остаются феноменологическими, пока они не выведены из более общих свойств движущейся материи. Такими свойствами могут быть ее дискретность, ее микроскопическая структура и количественные соотношения микромира, т.е. данные, которыми оперирует квантовая физика. Теория относительности рассматривает в качестве исходных соотношений сокращение движущихся масштабов и замедление времени в движущихся системах. С точки зрения квантовой теории масштабы и часы - это очень сложные тела.
"Они построены, - пишет Гейзенберг, - вообще говоря, из многих элементарных частиц, на них сложным образом воздействуют различные силовые поля и поэтому непонятно, почему именно их поведение должно описываться особенно простым законом" [10].
304
Эйнштейн, как мы знаем, и сам понимал, что исходные соотношения теории относительности, рисующие поведение масштабов и часов, должны быть выведены из каких-то более общих соотношений, записанных в виде уравнений. В этой книге уже упоминалось о такой чрезвычайно характерной, раскрывающей весьма существенную сторону неклассической физики оценке теории относительности ее творцом. В своей автобиографии Эйнштейн пишет:
"Сделаем теперь критическое замечание о теории в том виде, как она охарактеризована выше. Можно заметить, что теория вводит (помимо четырехмерного пространства) два рода физических предметов, а именно: 1) масштабы и часы, 2) все остальное, например электро-магнитное поле, материальную точку и т.д. Это в известном смысле не логично; собственно говоря, теорию масштабов и часов следовало бы выводить из решений основных уравнений (учитывая, что эти предметы имеют атомную структуру и движутся), а не считать ее независимой от них" [11].
10 Гейзенберг В. Замечания к эйнштейновскому наброску единой теории поля. - В сб.: Эйнштейн и развитие физико-математической мысли. М., 1962, с. 65.
11 Эйнштейн, 4, 280,
Разумеется, "теория масштабов и часов" или "поведение масштабов и часов" - фигуральные выражения. Буквальное, конкретное понимание подобных выражений существовало издавна. Быть может, во II в. до нашей эры некоторые жители Сиракуз всерьез думали, что во дворе одного из домов их родного города лежит рычаг, при помощи которого Архимед перевернет Землю, как только получит в свое распоряжение точку опоры. Быть может, иные, не веря в существование такого рычага, уличали Архимеда во лжи. Примерно в такой же мере наивно думать, что "поведение масштабов и часов" имеет смысл лишь при наличии линеек, рулеток, хронометров и пользующихся ими наблюдателей. Речь идет о вещах, существовавших за миллиарды лет до любых наблюдателей и принадлежащей им аппаратуры. Мы уже имели случай заметить, что Эйнштейн описал объективные про-
365
цессы с помощью "масштабов" и "часов", т.е. жестких стержней и периодически повторяющихся движений, а также с помощью "наблюдателей", которыми могут быть приборы, регистрирующие показания часов (число оборотов или число отрезков, пройденных телом после некоторого момента) и число уложенных между двумя точками твердых стержней. Устранить подобное понимание термина "поведение масштабов и часов" очень легко. Что действительно трудно (и что не сделано и не могло быть сделано Эйнштейном), - это указать микроскопические процессы, объясняющие соотношения между пространственными и временными измерениями ("поведение масштабов и часов") в движущихся одна относительно другой системах. Мы не можем и сейчас однозначным и достоверным образом показать, как микроскопическая структура вещества (быть может, атомистическая структура пространства-времени) приводит к соотношениям теории относительности Эйнштейна. Этим соотношениям подчинены все процессы в мире галактик, планет, молекул и атомов. Подчинено ли им поведение элементарных частиц в сколь угодно малых пространственно-временных областях? Мы этого пока не знаем. Если подчинено, то объяснение поведения масштабов и часов их атомистической структурой недостижимо: мы не можем отсылать "от Понтия к Пилату" и, объясняя природу соотношений теории относительности, апеллировать к процессам, подчиненным этим же соотношениям.
Однако можно предположить, что в очень малых, ультрамикроскопических областях имеют место соотношения, из которых вытекают соотношения теории относительности при переходе к большим областям пространства, к большим интервалам времени.
Переход к принципиально иным соотношениям и понятиям встретился нам при знакомстве с термодинамическими работами Эйнштейна и с классической термодинамикой XIX в. Это был переход от микроскопических движений отдельных молекул к состояниям макроскопических тел. Теперь мы имеем подчиненные соотношениям Эйнштейна движения. Быть может, задача состоит в том, чтобы перейти к этим движениям от ультра микроскопических состояний. Такая точка зрения в известной мере восходит к идеям Эйнштейна. Вспомним, что из теории относительности выросла новая, релятивистская теория
366
электрона, предполагающая превращение электронно-позитронных пар в фотоны и порождение электронно-позитронных пар из фотонов. Вспомним также то, что было сказано в связи с изложением квантовой механики и позиции Эйнштейна: за тридцать лет, прошедших после указанных открытий, трансмутации элементарных частиц, превращения частиц одного типа в частицы другого типа, объяснили множество фактов. За это время появилось и развилось представление об излучении частицей частиц иного типа и их последующем поглощении.
Мы знаем, что частица, которая макроскопически обладает непрерывным бытием, на самом деле (в ультрамикроскопическом аспекте) превращается в иные частицы и вновь возникает из них.
Поэтому кажется естественным предположение о трансмутациях как об основе прерывности, дискретности атомистической структуры пространства-времени. Частица определенного типа переходит из одной элементарной, далее неделимой пространственной клетки в соседнюю в течение элементарного интервала, превращаясь в частицу иного типа и вновь возникая уже в другой клетке.
Такое предположение о неотделимости элементарных трансмутаций от элементарных переходов дает наглядное представление о дискретности пространства-времени. Если частица исчезает в данной клетке и возрождается в соседней, никакой сигнал не может быть отправлен на расстояние, меньшее элементарного, и в течение времени, меньшего элементарного. Два события - пребывание частицы в точке х в момент времени t и пребывание частицы в точке х в момент времени t' - не могут быть разделены расстоянием, меньшим элементарного расстояния, и временем, меньшим элементарного интервала.
Предположение о дискретности пространства-времени кажется естественным хотя бы потому, что оно высказывалось на каждом этапе развития науки. Уже Эпикур - об этом речь пойдет в главе "Эйнштейн и Аристотель" - говорил о "кинемах", о микроскопических перемещениях атомов в течение "мгновений, постижимых лишь мыслью", с одной и той же скоростью. Тела, состоящие из атомов, могут двигаться с меньшей скоростью; они даже могут быть неподвижными, если число "кинем", направленных в одну сторону, примерно равно числу "кинем", направленных в обратную сторону.
367
Мир современных аналогов эпикуровских "кинем", мир элементарных трансмутаций-смещений может служить иллюстрацией, - разумеется, совершенно условной - тех закономерностей, которые Эйнштейн искал за кулисами закономерностей квантовой механики. Движение тождественной себе частицы подчинено соотношениям квантовой механики Рассматривая результат большего числа элементарных трансмутаций-переходов, игнорируя отдельные переходы, принимая во внимание макроскопическое движение частицы, мы не можем выйти за пределы этих соотношений: зная положение частицы в данный момент, мы можем узнать лишь вероятность ее скорости. Частица движется в определенную сторону, ее макроскопическая траектория имеет определенное направление, если вероятность элементарных сдвигов в эту сторону больше, чем вероятность элементарных сдвигов в другую сторону, В атом случае частица после большого числа переходов окажется прошедшей свой макроскопический путь, на котором определенное положение несовместимо с определенной скоростью. Здесь все подчинено статистическим закономерностям квантовой механики. Но это еще ничего не говорит о закономерностях, стоящих за кулисами квантовой механики.
Речь идет отнюдь не о каких-то "скрытых параметрах", не о каких-то неизвестных процессах, позволяющих точно определить в одном эксперименте положение и скорость движущейся частицы, найти закономерности движения этой частицы, определяющие достоверным образом не вероятность ее пребывания в данной точке, а самое пребывание. Подобных "скрытых параметров" нет, движение частицы (частицы, тождественной все время самой себе, частицы, движущейся, не исчезая и не возникая) определяется статистическими законами квантовой механики. Но такое движение представляет собой, быть может, только статистический результат большого числа элементарных процессов, к которым неприменимо понятие определенных или неопределенных динамических переменных.
Подобные схемы не претендуют на что-либо большее, чем роль условных иллюстраций, показывающих одно обстоятельство, важное для понимания и исторической оценки "бесплодных" идей Эйнштейна. Эти идеи отнюдь не тянули физику вспять, от квантово-статистической причинности к классической причинности. Приведенная
368
схема иллюстрирует принципиальную возможность такого развития теории микромира, которое отводит эту теорию еще дальше от классических представлений, чем квантовая механика, к идеям, еще более парадоксальным и "безумным" с точки зрения классической физики. Все дело в том, что процесс познания, каким он представлялся Эйнштейну, не встречает абсолютных границ в виде окончательно завершенных теорий и не возвращается назад. Процесс познания повторяет иногда уже пройденные циклы, но всегда на новой основе.
Уже в начале сороковых годов Эйнштейн подходил очень близко к идеям, созревающим сейчас, в семидесятые годы, в релятивистской квантовой физике в связи с изучением свойств элементарных частиц и различных взаимодействий полей. В начале этой главы приводились строки из письма Эйнштейна Гансу Мюзаму в 1944 г. - в них говорится о "безжалостных тисках математических мучений".
Перед этими строками изложен общий замысел единой теории:
"Целью служит релятивистская характеристика физического пространства, но без дифференциальных уравнений. Последние не приводят к разумному пониманию квантов и вещества. Это в известном смысле отказ от принципа близкодействия, в котором мы со времен Герца были столь твердо уверены. У меня нет сомнений, что это возможно. В принципе это возможно без использования статистического метода, который я всегда считал гнилым выходом..." [12]
12 Helle Zeit, 51.
"Релятивистская характеристика физического пространства" означает концепцию пространства, выводящую из его свойств характер происходящих в пространстве физических процессов. Подобная концепция должна, по мнению Эйнштейна, пользоваться иным математическим аппаратом по сравнению с современными дифференциальными уравнениями физики и механики.
Выше уже шла речь о физическом смысле этих дифференциальных уравнений. В них заданы отношения бесконечно малых приращений скорости частиц, а также бесконечно малых приращений действующих на частицы сил к бесконечно малым приращениям пространства и
369
времени. Физический смысл применения подобных уравнений состоит в том, что в любой сколь угодно малой пространственной области и в любой сколь угодно малый интервал времени что-то происходит и это что-то подчиняется законам физики, которые выражаются в уравнениях. Иными словами, их смысл состоит в непрерывности физического пространства и времени, в возможности бесконечного дробления пространства и времени, причем пространство (как и время) остается физическим, т.е. его структура определяет характер физических процессов. Согласуется ли такое допущение с атомистическим строением вещества и атомистической структурой полей, т.е. существованием квантов поля, далее неделимых порций его энергии? Нет, не согласуется, отвечает Эйнштейн. Поэтому, быть может, придется отказаться от принципа близкодействия, т.е. представления о непрерывности физических процессов, о том, что каждый процесс идет от мгновения к мгновению и от точки к точке.
Более сложной оказывается расшифровка слов о статистическом методе. Нельзя думать, что Эйнштейн считал статистические идеи "гнилым выходом" во всех случаях. Ему принадлежат крупнейшие по значению работы о статистике в классической и квантовой физике, и в этих работах, применяя и развивая методы статистики, Эйнштейн решил важные задачи. Эпитет, по-видимому, относится к представлению о статистических закономерностях квантовой механики как о последних закономерностях бытия. Эйнштейн надеялся па существование более глубоких закономерностей нестатистического характера.
Как ни странно, эта надежда в сущности не противоречит мысли Макса Борна о статистическом характере по только квантовой, по и классической механики. Ведь из письма Мюзаму (и из большого числа других высказываний Эйнштейна) видно, что "заквантовые" процессы представлялись ему отнюдь не классическими и, более того, отнюдь не механическими. Эти процессы не состоят в "классическом" движении с определенным в каждый момент положением и скоростью - иначе к ним можно было бы применить дифференциальные уравнения, т.е. прослеживать их с бесконечной точностью вплоть до сколь угодно малых областей. Но они не состоят и в "квантовом" движении с определенным положением либо с определенной скоростью. Они вообще не состоят в ме-
370
ханическом движении, в перемещении физических объектов. За относительными границами, охватывающими данную форму причинности, когда-то казавшуюся парадоксальной, лежат другие формы причинности, снова парадоксальные, за классическим детерминизмом Лапласа - квантовомеханический детерминизм, за ним - еще более решительно порывающий с классическими процессами детерминизм ультрамикроскопических процессов. Научное познание состоит в последовательном усложнении, модификации, обобщении и уточнении каузальных представлений об окружающем нас мире.
Быть может, ультрамикроскопические закономерности позволят обобщить исходные закономерности теории относительности. Не исключено, что "поведение масштабов и часов" зависит от соотношений между элементарными расстояниями и элементарными интервалами времени. В качестве условной иллюстрации можно предложить, например, следующую модель. Минимальная длина равна приблизительно 10 в -13 степени см. Есть основания принять для нее такой или близкий порядок величины. Впрочем, есть основания и для значительно меньшего минимального расстояния. Поскольку перед нами не физическая модель, а историко-физическая, иллюстрирующая лишь некоторые тенденции современной науки, выбор значения здесь несуществен [13].
13 См.: Kouznetsov В. Complementarity and Relativity. - Philosophy of science, 1966, v. 33, N 3, p. 199-209.
Таким образом, 10 в -13 степени см - минимальное расстояние, на которое может быть послан сигнал, минимальное расстояние, на которое может переместиться частица. Меньшее расстояние уже не характеризует поведение частицы, здесь само понятие ее движения теряет смысл. Соответственно здесь неприменимы понятия относительности движения и соотношения теории относительности. Но именно здесь им, по-видимому, суждено найти то обоснование, о котором думал Эйнштейн.
Представим себе, что время состоит из минимальных интервалов, равных времени прохождения света через указанное выше минимальное расстояние.