Банковское дело / Доходы и расходы / Лизинг / Финансовая статистика / Финансовый анализ / Финансовый менеджмент / Финансы / Финансы и кредит / Финансы предприятий / Шпаргалки Главная Финансы Финансы
Д.Э. БЭСТЕНС, В.М. ВАН ДЕН БЕРГ, Д. ВУД. Нейронные сети и финансовые рынки: принятие решений в торговых операциях. - Москва: ТВП,1997. - хх, 236 с., 1997 | |
Очистка и преобразование базы данных |
|
Стоит начать с того, чтобы изобразить распределение переменной с помощью гистограммы или же рассчитать для него характеристики асимметрии (симметричность распределения) и эксцесса (весомости лхвостов распределения). В результате будет получена информация о том, насколько распределение данных близко к нормальному. Многие методы моделирования, в том числе, - нейронные сети, дают лучшие результаты на нормализованных данных. Далее, с помощью специальных статистических тестов, например, на расстояние Махаланобиса, можно выявить многомерные выбросы, с которыми затем нужно разобраться на предмет достоверности соот-ветствующих данных. Эти выбросы могут порождаться ошибочными данными или крайними значениями, вследствие чего структура связей между переменными может (а может и не) нарушаться (см. [19]). В некоторых приложениях выбросы могут нести положительную информацию, и их не следует автоматически отбрасывать. Предварительное, до подачи на вход сети, преобразование данных с помощью стандартных статистических приемов может существенно улучшить как параметры обучения (длительность, сложность), так и работу системы. Например, если входной ряд имеет отчетливый экспоненциальный вид, то после его логарифмирования получится более простой ряд, и если в нем имеются сложные зависимости высоких порядков, обнаружить их теперь будет гораздо легче. Очень часто ненормально распределенные данные предварительно подвергают нелинейному преобразованию: исходный ряд значений переменной преобразуется некоторой функцией, и ряд, полученный на выходе, принимается за новую входную переменную. Типичные способы преобразования - возведение в степень, извлечение корня, взятие обратных величин, экспонент или логарифмов (см. [250]). Нужно проявить осторожность в отношении функций, которые определены не" всюду (например, логарифм отрицательных чисел не определен). После этого могут быть применены дополнительные преобразования для изменения формы кривой регрессии. Часто это на порядок уменьшает требования к обучению [284], [251]. Для того чтобы улучшить информационную структуру данных, могут оказаться полезными определенные комбинации переменных - произведения, частные и т.д. Например, когда вы пытаетесь предсказать изменения цен акций по данным о позициях на рынке опционов, отношение числа опционов пут (put options, т.е. опционов на продажу) к числу опционов колл (call options, т.е. опционов на покупку) более информативно, чем оба этих показателя в отдельности. К тому же, с помощью таких промежуточных комбинаций часто можно получить более простую модель, что особенно важно, когда число степеней свободы ограниченно. Наконец, для некоторых функций преобразования, реализованных в выходном узле, возникают проблемы с масштабированием. Сигмоид определен на отрезке [0,1], поэтому выходную переменную нужно масштабировать так, чтобы она принимала значения в этом интервале. Известно несколько способов масштабирования: сдвиг на константу, пропорциональное изменение значений с новым минимумом и максимумом, центрирование путем вычитания среднего значения, приведение стандартного отклонения к единице, стандартизация (два последних действия вместе). Имеет смысл сделать так, чтобы значения всех входных и выходных величин в сети всегда лежали, например, в интервале [0,1] (или [-1,1]), - тогда можно будет без риска использовать любые функции преобразования. Еще одна важная проблема (которая одновременно является основным преимуществом нейронно-сетевых методов) - способность работать с данными качественного характера. Отношения эквивалентности или порядка нужно суметь записать для входа (или выхода) сети. Это можно сделать, вводя искусственные переменные, принимающие значения 1 или 0. Одна прикладная задача с качественными данными рассмотрена в гл. 8. |
|
<< Предыдушая | Следующая >> |
= К содержанию = | |
Похожие документы: "Очистка и преобразование базы данных" |
|
|