Аудит / Институциональная экономика / Информационные технологии в экономике / История экономики / Логистика / Макроэкономика / Международная экономика / Микроэкономика / Мировая экономика / Операционный анализ / Оптимизация / Страхование / Управленческий учет / Экономика / Экономика и управление народным хозяйством (по отраслям) / Экономическая теория / Экономический анализ Главная Экономика Информационные технологии в экономике
Бараз В.Р.. Корреляционно-регрессионный анализ связи показателей коммерческой деятельности с использованием программы Excel, 2005 | |
Корреляция |
|
рассматривается как признак, указывающий на взаимосвязь ряда числовых последовательностей. Иначе говоря, корреляция характеризует силу взаимосвязи в данных. Если это касается взаимосвязи двух числовых массивов xt и у, то такую корреляцию называют парной. При поиске корреляционной зависимости обычно выявляется вероятная связь одной измеренной величины x (для какого-то ограниченного диа-пазона ее изменения, например от x1 до xn) с другой измеренной величиной у (также изменяющейся в каком-то интервале у1 ... yn). В таком случае мы будем иметь дело с двумя числовыми последовательностями, между которыми и надлежит установить наличие статистической (корреляционной) связи. На этом этапе пока не ставится задача определить, является ли одна из этих случайных величин функцией, а другая - аргументом. Отыскание количествен* Статистический смысл термина значимость означает, что анализируемая зависимость проявляется сильнее, чем это можно было бы ожидать от чистой случайности. ной зависимости между ними в форме конкретного аналитического выражения y = f(x) - это задача уже другого анализа, регрессионного. Таким образом, корреляционный анализ позволяет сделать вывод о силе взаимосвязи между парами данных х и у, а регрессионный анализ используется для прогнозирования одной переменной (у) на основании другой (х). Иными словами, в этом случае пытаются выявить причинно-следственную связь между анализируемыми совокупностями. Рис.1. Схематическое пояснение сути корреляционного и регрессионного анализов Схематическое изображение изложенных соображений представлено на рис.1. Строго говоря, принято различать два вида связи между числовыми совокупностями - это может быть функциональная зависимость или же статистическая (случайная). При наличии функциональной связи каждому значению воздействующего фактора (аргумента) соответствует строго определен-ная величина другого показателя (функции), т.е. изменение результативного признака всецело обусловлено действием факторного признака. Графически это (при наличии линейной зависимости) может быть представлено в виде прямой линии (рис.2а). а б y y Поле корреляции x Рис.2. Зависимость функциональная (а) и статистическая (б) Аналитически функциональная зависимость представляется в следующем виде: y = f(x). В случае статистической связи значению одного фактора соответствует какое-то приближенное значение исследуемого параметра, его точная величина является непредсказуемой, непрогнозируемой, поэтому получаемые показатели оказываются случайными величинами. Это значит, что изменение результативного признака у обусловлено влиянием факторного при-знака х лишь частично, т.к. возможно воздействие и иных факторов, вклад которых обозначен как s y = <(x) + s. По своему характеру корреляционные связи - это соотносительные связи. Примером корреляционной связи показателей коммерческой деятельности является, например, зависимость сумм издержек обращения от объема товарооборота. В этой связи помимо факторного признака х (объема товарооборота) на результативный признак у (сумму издержек обращения) влияют и другие факторы, в том числе и неучтенные, порождающие вклад s. Такая зависимость графически изображается в виде экспериментальных точек, образующих поле рассеяния, или, как принято говорить, поле корреляции (рис.2б). Следовательно, такие двумерные данные можно анализировать с использованием диаграммы рассеяния в координатах лх - у, которая дает визуальное представление о взаимосвязи исследуемых совокупностей. Для количественной оценки существования связи между изучаемыми совокупностями случайных величин используется специальный статистический показатель - коэффициент корреляции r. Если предполагается, что эту связь можно описать линейным уравнением типа y = a + bx (где a и b - константы), то принято говорить о существовании линейной корреляции. |
|
<< Предыдушая | Следующая >> |
= К содержанию = | |
Похожие документы: "Корреляция" |
|
|