Организация баз данных

Методическое пособие - Педагогика

Другие методички по предмету Педагогика

bsp;

В этом отношении присутствуют 2 потенциальных ключа {StNo, SubjNo, DocNo} и {IdCode, SubjNo, DocNo}. Отношение находится в 3-й НФ, но не находится в НФБК, так как содержит два детерминанта, которые не являются потенциальными ключами этого отношения (StNo и IdCode детерминанты, поскольку они определяют друг друга). Как видно, в отношении MI присутствует доля избыточности, которая имелась и в ранее рассмотренных отношениях (SM и CNR), поэтому оно характеризуется такими же аномалиями обновления. Для решения этой проблемы отношение MI следует разбить на две проекции:

SI {StNo, IdCode} и Marks{StNo, SubjNo, DocNo, Mark}

или другим способом

SI {StNo, IdCode} и Marks{IdCode, SubjNo, DocNo, Mark}

Т.о. присутствуют две, в одинаковой мере допустимые декомпозиции, причем все проекции отношения MI находятся в НФБК. Исходя из соображений здравого смысла первая декомпозиция лучше, поскольку в учебной БД для идентификации студента используется его код StNo.

 

Литература:

 

  1. Дейт К.Дж. Введение в системы баз данных. Пер. с англ. 6-е изд. К.Диалектика, 1998. Стр. 279301.
  2. Проектирование БД. Нормальные формы отношений (продолжение)

 

7.1Многозначные зависимости

7.2Четвертая нормальная форма

7.3Зависимости соединения

7.4Пятая нормальная форма

7.5Итоговая схема процедуры нормализации

 

  1. Многозначные зависимости

 

Пусть дано ненормализованное отношение UCTX (т.е. отношение, которое не находится в 1НФ), содержащее информацию о курсах обучения, преподавателях и учебниках. Каждый кортеж такого отношения состоит из названия курса (Course), a также групп имен преподавателей (Teachers) и названий учебников (Texts) на рис. 7.1 показаны два таких кортежа. Под этим подразумевается, что каждый курс может преподаваться любым преподавателем соответствующей группы с использованием всех указанных учебников. Предположим, что для заданного курса может существовать любое количество соответствующих преподавателей и соответствующих учебников. Более того, допустим, хотя это и не совсем реалистичное допущение, что преподаватели и рекомендуемые учебники совершенно независимы друг от друга. Это значит, что независимо от того, кто преподает данный курс, всегда используется один и тот же набор учебников. Наконец, допустим, что определенный преподаватель или определенный учебник могут быть связан с любым количеством курсов.

 

UCTXCOURSETEACHERSTEXTSФизикапроф. Иванов

проф. Петровосновы механики

оптикаМатематикапроф. Иванов

основы механики

дискретная математика

тригонометрия

рис. 7.1 Ненормализованное отношения UCTX

 

Преобразуем это отношение в эквивалентное нормализованное отношение. Следует заметить, что для рассматриваемых данных функциональные зависимости не заданы (за исключением тривиальных зависимостей типа CourseCourse). Поэтому высказанные в предыдущей главе идеи не позволяют создать никакой формальной основы для выполнения декомпозиции данного отношения на проекции.

 

CTXCOURSETEACHERTEXTФизикапроф. Ивановосновы механикиФизикапроф. ИвановоптикаФизикапроф. Петровосновы механикиФизикапроф. Петров оптикаМатематикапроф. Ивановосновы механикиМатематикапроф. Ивановдискретная математикаМатематикапроф. Ивановтригонометрия

рис. 7.2 Таблица нормализованного отношения CTX.

 

В простейшей формулировке нормализованное отношение CTX означает, что кортеж {Course:c, Teacher:t, Техт:x} появляется в данном отношении тогда и только тогда, когда курс c читается преподавателем t с использованием учебника x. Тогда, принимая во внимание допустимость существования для данного отношения всех возможных комбинаций преподавателей вместе с учебниками, можно утверждать, что для отношения CTX верно следующее ограничение: если присутствуют оба кортежа (c,tl,xl) и (c,t2,x2), тогда присутствуют также оба кортежа (c,tl,x2) и (c,t2,xl)

Очевидно, что отношение CTX характеризуется значительной избыточностью и приводит к возникновению аномалий обновления. Например, для добавления информации о том, что курс физики может читаться новым преподавателем, необходимо создать два новых кортежа, по одному для каждого учебника. Тем не менее, отношение CTX находится в НФБК, поскольку является "полностью ключевым".

Можно заметить, что ситуация может быть исправлена к лучшему, если заменить отношение СТХ его проекциями {Course, Teacher} и {Course, Text}, показанными на рис. 7.3. Обе проекции являются "полностью ключевыми" и находятся в НФБК; более того, отношение СТХ может быть восстановлено с помощью обратного соединения проекций СТ и СХ и потому данная композиция выполняется без потерь. Однако только в 1971 году эти интуитивные идеи были сформулированы Фейгином (Fagin) в строгом теоретическом виде с помощью понятия многозначных зависимостей.

 

CTСХCOURSETEACHERCOURSETEXTфизикапроф. Ивановфизикаосновы механикифизикапроф. Петровфизикаоптикаматематикапроф. Ивановматематикаосновы механикиматематикадискретная математикаматематикатригонометрия

рис. 7.3 Таблицы проекций СТ и СХ

 

Возвращаясь к рассматриваемому примеру с действительно корректной и желательной декомпозицией, показанной на рис. 7.3, следует, однако, отметить, что такая декомпозиция не может быть выполнена на основе функциональных зависимостей, поскольку они не существуют в данном отношении (кроме тривиальных зависимостей). Однако ее можно осуществить на основе нового типа зависимости, а именно упомянутой выше многозначной зависимости. Многозначные зависимости можно считать обобщением функциональных зависимостей