Определитель прямоугольных матриц. Теорема Коши - Бине
Реферат - Математика и статистика
Другие рефераты по предмету Математика и статистика
?ой в строке, столбце расположен элемент , т.е. . Другими словами: Чтобы сложить две матрицы нужно сложить соответствующие элементы:
Пример:Опр. Пусть , , . Произведение скаляра на матрицу называется у которой в строке, столбце расположен элемент . Другими словами: Чтобы скаляр умножить на матрицу нужно все элементы матрицы умножить на скаляр .
Определение. Противоположной к матрице называется матрица
Свойства сложения и умножения матриц на скаляры:
-абелева группа
1) Сложение матриц ассоциативно и коммутативно.
2)
3)
а)
б)
4)
Глава II
1 Умножение матриц
,
,
Опр. Произведением матрицы на матрицу называется матрица . , где
, где
Говорят, что есть скалярное произведение -строки матрицы на -столбец матрицы .
, где
Пример:
2 Свойства умножения матриц
- Умножение матриц ассоциативно:
1) , если определены произведения матриц и
Доказательство:
Пусть , так как определено , то и определено , то
Определим матрицы:
а)
б)
(1) матрицы, тогда имеют одинаковую размерность
2) Покажем, что на одинаковых местах в матрицах расположены одинаковые элементы
из равенства (1) (2), (3). Подставляя (3) в (2) получим:
, тогда (4), (5). Подставляя (5) в (4) получим:
Вывод: Матрицы имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы.
- Умножение матриц дистрибутивно
:
Доказательство:
так как определено , то и определено , то
размерности
размерности
Матрицы имеют одинаковую размерность, покажем расположение одинаковых элементов:
,
,
Вывод: На одинаковых местах расположены одинаковые элементы.
3. , . Если определены матрицы, то доказательство проводим аналогично свойству 2.
4. , : , если определена матрица
Доказательство:
. Пусть ,
, ,
5. Умножение матриц в общем случае не коммутативно. Рассмотрим это на примере:
, тогда
3 Техника матричного умножения
поле скаляров, ,
Свойства:
- Произведение
можно рассматривать, как результат умножения столбцов матрицы на слева и как результат умножения строк матрицы на справа.
- Пусть
матрица , -линейная комбинация столбцов матрицы коэффициенты которой служат элементы матрицы
Пример
Пусть -матрица , тогда -линейная комбинация строк матрицы коэффициенты которой служат элементы матрицы
Пример:
- Столбцы матрицы
-линейная комбинация столбцов матрицы . Строки -линейная комбинация строк матрицы .
4 Транспонирование произведения матриц
поле скаляров, , , ,
Теорема
если , то . Обозначим: ,
Доказательство:
1) Пусть ,
- размерности ,- размерности , тогда и имеют одинаковую размерность
2) , -элемента расположенный в -строке, -столбце матрицы т.е
, -произведение -строки транспонированной на столбец ,
Глава III
1 Обратимые матрицы
поле скаляров, множество матриц порядка
Определение. Квадратная матрица порядка называется единичной матрицей ,
Пусть ,
Теорема 1
, то для выполняется
Доказательство:
Из этого следует . Матрица является единичной матрицей. Она выполняет роль единицы при умножении матриц.
Определение. Квадратная матрица называется обратимой если существует так, что выполняются условия
Матрица называется обратной к и обозначается , тогда если -это обратная к , то обратная к -это взаимообратные матрицы т.е.
Теорема 2
Если -обратима, то существует только одна матрица обратная к
Доказательство:
Пусть дана матрица , которая обратима и пусть существуют матрицы обратные к т.е. . Имеем
Обозначение: Множество всех обратимых матриц порядка над полем обозначается
Теорема 3
Справедливы утверждения:
1) алгебра
2) группа
Доказательство:
1) -это бинарная операция
а) Пусть , так как -обратимые матрицы, проверим, что -это бинарная операция:
обратные к
Аналогично: , обратимая матрица т.е -это бинарная операция
б) , матрица обратима, поэтому -это унарная операция
в) обратима т.е
2) Докажем второе утверждение, что группа. Для этого проверим аксиомы групп:
1)
2)
3)
группа
Следствие:
- Произведение обратимых матриц есть обратимая матрица
- Если
обратима, то обратима
- 2 Элементарные матрицы
Пусть поле скаляров
Определение.Элементарной матрицей называется матрица, полученная из единичной матрицы в результате одного из следующих элементарных преобразований:
- Умножение строки (столбца)
на скаляр
- Прибавление к какой либо строке (столбцу)
другой строки (столбца), умноженный на скаляр
Обозначение:
-элементарная матрица, полученная умножением на -строки (столбца) матрицы
-строка
-элементарная матрица, полученная прибавлением к -строке (столбцу) матрицы -строки (столбца), умноженной на
-строка
Пример: Элементарные матрицы порядка 2
, , , ,
Обозначение: -элементарная матрица, полученная из единичной матрицы с помощью элементарного преобразования