Определение законов распределения случайных величин и их числовых характеристик на основе опытных да...

Реферат - Математика и статистика

Другие рефераты по предмету Математика и статистика

ких точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 8-3=5 находим

 

 

Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины .

 

Для случайной величины :

 

Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле

, где - объем выборки, - шаг (разность между двумя соседними вариантами, ,

 

 

 

17-1.40365.92741.15040.1941216-0.740512.066515.47251.2823319-0.077415.824810.08200.6371460.585713.370254.31974.0627561.24887.27751.63190.2242651.91192.55195.99322.3485712.57500.57650.17940.3111

 

В итоге получим = 8.1783

По таблице критических точек распределения ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 7 - 3=4 находим

Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины .

 

  1. Построить график функции плотности распределения

    случайной величины в одной системе координат с гистограммой.( взяв в качестве математического ожидания и дисперсии их статистические оценки и ) и вычислив значение функции в точках: , , а также в точке левее первого и правее правого промежутка группировки.

  2.  

 

 

 

 

 

  1. Выполнить задание 6 для случайной величины

    .

  2.  

 

 

 

  1. Найти доверительные интервалы для математических ожиданий и дисперсий случайных величин

    и , соответствующие доверительной вероятности .

  2. Найдем доверительный интервал для математического ожидания :

Рассмотрим статистику , имеющую распределение Стъюдента с степенями свободы. Тогда требуемый доверительный интервал определится неравенством . И доверительный интервал для выглядит следующим образом:

Найдем по таблицам ([2], стр. 391). По =0,95 и =120 находим: =1,980. Тогда требуемый доверительный интервал примет вид:

То есть: (20,93721;26,12946).

 

Найдем доверительный интервал для математического ожидания :

Рассмотрим статистику , имеющую распределение Стъюдента с степенями свободы. Тогда требуемый доверительный интервал определится неравенством . И доверительный интервал для выглядит следующим образом:

Найдем по таблицам ([2], стр. 391). По =0,95 и =60 находим: =2,001. Тогда требуемый доверительный интервал примет вид:

То есть: (20,043;27,056).

 

Известно, что если математическое ожидание неизвестно, то доверительный интервал для дисперсии при доверительной вероятности имеет вид

Для случайной величины найдем:

.

Таким образом, имеем доверительный интервал: (162,8696; 273,8515).

Для случайной величины найдем

Таким образом, имеем доверительный интервал: (134,82; 277,8554).

(Квантили распределения найдены по таблице [3], стр. 413).

 

  1. Проверить статистическую гипотезу

    при альтернативной гипотезе на уровне значимости .

  2. Рассмотрим статистику

,

где

,

которая имеет распределение Стъюдента ,

Тогда область принятия гипотезы .

Найдем s:

Найдем значение статистики :

По таблице квантилей распределения Стъюдента ([2], стр. 391)

Т. к. , то гипотеза принимается. Предположение о равенстве математических ожиданий не противоречит результатам наблюдений.

  1. Проверить статистическую гипотезу

    при альтернативной гипотезе на уровне значимости.

  2. Рассмотрим статистику , где , т.к. . Эта статистика имеет распределение Фишера . Область принятия гипотезы

Найдем значение статистики :

По таблицам найдем . Т.к. , то гипотеза принимается. Предположение не противоречит результатам наблюдений.

Библиографический список

  1. Сборник задач по математике для втузов. Ч. 3. Теория вероятностей и математическая статистика: Учеб. пособие для втузов / Под. ред. А.В. Ефимова. 2-е изд., перераб. и доп. М.: Наука. Гл. ред. физ.-мат. лит. , 1990. 428 с.
  2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов вузов. Изд. 4-е, стер. М.: Высш. Шк., 1997. 400 с.: ил.
  3. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для втузов. Изд. 5-е, перераб. и доп. М., Высш. школа, 1977.
  4. Вентцель Е.С. Теория вероятностей. М.: 1969, 576 с.