Общая энергетика

Методическое пособие - Физика

Другие методички по предмету Физика

»я дополнительного нагрева и сушки пара. Система имеет опускные трубы 8, по которым вода из нижней части барабана опускается в коллектор.

В котле барабанного типа обеспечивается естественная циркуляция воды и пароводяной смеси за счет их разной плотности.

Такая система позволяет получить докритические параметры пара (критической называется точка состояния, в которой исчезает различие в свойствах жидкости и пара): давление до 22,5 МПа, а практически не более 20 МПа; температура до 374С (без пароперегревателя). При большем давлении нарушается естественная циркуляция воды и пара. Принудительная циркуляция пока не нашла применения в мощных барабанных котлах из-за своей сложности. Поэтому котлы данного типа используются в энергоблоках мощностью до 500 МВт при паропроизводителъности до 1600 тонн в час.

В котле прямоточного типа специальные насосы осуществляют принудительную циркуляцию воды и пара. Питательная вода насосом 9 через экономайзер 2 подается в трубы-испарители 10,где превращается в пар. Через пароперегреватель 7 пар поступает в турбину. Отсутствие барабана и принудительна циркуляция воды и пара позволяют получить сверхкритические параметры пара: давление до 30 МПа и температуру до 590С. Это соответствует энергоблокам мощностью до 1200 МВт и паропроизводителъности до 4000 т/ч.

Котлы, предназначенные только для теплоснабжения и устанавливаемые в местных или районных котельных, выполняются на тех же принципах, что рассмотрены выше. Однако параметры теплоносителя, определяемые требованиями потребителей тепла, существенно отличаются от рассмотренных ранее (некоторые технические характеристики таких котлов приведены в табл.1.3).

 

Таблица 1.3. Технические данные котлов отопительных систем

Тип котлаВид теплоносителяТепловая мощность, МВтПаропроизводи-тельность, т/чПримечаниеКЧМ-2 чугунныйВода0,05Т = 1150С р = 0,7 МПаФакел чугунныйВода1,0То же, газомазутныйДКВР стальнойПар2,5…25р = 1,4 МПа, твердотопливныйДЕ стальнойПар4,0…25р = 1,4 МПа, газомазутныйПТВМ стальнойВода58; 116; 209Т =70…1500С газомазутныйКВ-ТК стальнойВода35; 116Т =70…1500С твердотопливный

Например, котельные, пристроенные к зданиям, допускают применение котлов с давлением пара до 0,17 МПа и температурой воды до 1150С, а максимальная мощность встроенных котельных не должна превышать 3,5 МВт при работе на жидком и газообразном топливе или I,7 МВт при работе на твёрдом топливе. Котлы отопительных систем различаются по виду теплоносителя (вода, пар), по производительности и тепловой мощности, по конструкции (чугунные и стальные, малометражные и шатровые и др.).

Эффективность работы системы парогенерации или подготовки горячей воды во многом определяется коэффициентом полезного действий (КПД) котлоагрегата.

В общем случае КПД парового котла и расход топлива определяются выражениями:

 

, %,

, кг/с, (1.1)

 

где hk - КПД парового котла, %; q2, q3, q4, q5, q6 - потеря теплоты соответственно с уходящими газами, химическим недожогом, механическим недожогом, на наружное охлаждение, со шлаком, %; В - полный расход топлива, кг/с; QПК - теплота, воспринятая рабочей средой в паровом котле, кДж/м; - располагаемая теплота поступающего в топку топлива, кДж/кг.

Рис.1.4. Конструкции паровых котлов.

а - барабанного типа; б - прямоточного типа

- барабан; 2 - экономайзер; 3 - камера уходящих газов; 4 - коллектор; 5 - топочная камера; 6 - подъёмные трубы; 7 - пароперегреватель; 8 - опускные трубы; 9 - насос; 10 - трубы-испарители

 

Если теплота уходящих газов не используется, то

 

, % ,

 

а при разомкнутой системе сушки топлива уходящими газами

 

, %, (1.2)

 

где Нух, Нотб, - энтальпия соответственно уходящих газов, газов в месте отбора на сушку и холодного воздуха, кДж/кг; r - доля отбора газов на сушку; ?yx - избыток воздуха в уходящих газах.

Энтальпия газа при температуре Т численно равна количеству теплоты, которое подведено к газу в процессе нагревания его от нуля градусов Кельвина до температуры Т при постоянном давлении.

При разомкнутой системе сушки все данные о топливе относят к подсушенному топливу.

В этом случае расход сырого топлива при изменении влажности от WР до Wсуш составляет

 

, кг/с (1.3)

 

где Всуш - расход подсушенного топлива по (1.1), кг/с; Wсуш, WР - влажность подсушенного и неподсушенного топлива, %.

При изменении влажности меняется и низшая теплота сгорания
топлива от до :

 

, кДж/кг (1.4)

 

Низшая теплота сгорания соответствует количеству теплоты, выделяемой топливом при полном его сгорании без учёта теплоты, затрачиваемой на образование водяных паров, которые находятся в продуктах сгорания.

Полная располагаемая теплота поступающего в топку топлива

 

, кДж/кг, (1.5)

 

где - низшая теплота сгорания топлива, кДж/кг; - дополнительная теплота, вносимая в котел подогретым снаружи воздухом, паровым дутьем и т.д., кДж/кг.

Для ориентировочных расчетов .

Теплота, воспринимаемая рабочей средой в паровом котле

 

, кДж/с, (1.6)

 

где Dп - паропроизводительность котла, кг/с; hпп, hпв - энтальпия перегретого пара и питающей воды, кДж/кг; ?Qпк - дополнительно воспринимаемая теплота при наличии в котле пароперегревателя, продувки водой и т.д., кДж/с.

Для ориентировочных расчетов ?Qпк=0,2…0,3 Dп(hпп - hпв).

, %, (1.7)

 

где ?ун- доля уноса золы с продуктами сгорания; Ншл - энтальпия шлака, кДж/кг; АР - рабочая зольность топлива, %.

Значения q3, q4, q5, Wр, Aр, приводят