Общая энергетика

Методическое пособие - Физика

Другие методички по предмету Физика

жду электродами внутри канала генератора и во внешней цепи. Отсутствие в МГД-генераторе движущихся частей позволяет достичь температуры рабочего тела 2550…2600 0С на входе и обеспечить КПД термического цикла 70...75%.ГД-yстановки могут работать по различиям схемам. Один из вариантов - с ядерным реактором по замкнутому циклу (рис.1.15.б.). Рабочее тело (аргон или гелий с добавлением цезия) нагревается в ядерном реакторе или в высокотемпературном теплообменнике 3 и поступает в МГД-канал 4, где тепловая энергия движущейся плазмы превращается в электрическую. Отработавшие в МГД-канале газы, имеющие температуру около 1500 0С, поступают в парогенератор 5, который обеспечивает работу паротурбинной установки 6. МГД-цикл замыкается через компрессор 7, который возвращает газ в реактор или в теплообменник 3.

Рис.1.15. МГД- установка.

а - принцип работы МГД- генератора; б - МГД- установка с ядерным реактором.

 

Мощность опытно-промышленной МГД-установки составляет 25 МВт. В стадии технического освоения находится установка мощностью 500 МВт. В этом процессе есть ряд трудностей, сдерживающих темпы внедрения МГД-генераторов: создание магнитных полей с высокой индукцией; достижение высокой проводимости плазмы при температурах до 2400…2500 0С; создание термо-жаростойких материалов; получение переменного тока, который приходится инвертировать из постоянного, вырабатываемого МГД-установкой. Тем не менее, разработка и внедрение МГД-генераторов имеет достаточно хорошие перспективы.

Термоядерные установки. Создание промышленных установок такого типа способно практически полностью решить проблему получения необходимого количества энергии. Запас изотопов дейтерия и трития, исходного топлива для термоядерных реакторов, на Земле практически неограничен. В процессе термоядерной реакции выделяется колоссальная энергия. Это происходит на Солнце, а также при взрыве водородной бомбы. Чтобы управлять таким процессом, следует обеспечить ряд условий: плотность топлива не менее 1015 ядер в 1 см3; температура 100…500?106 градусов. Данное состояние топлива должно удерживаться, доли секунды.

Работы по созданию термоядерного реактора интенсивно проводились в СССР, США, Японии. Были получены определённые положительные результаты, например, установка "ТОКОМАК" в институте атомной энергии им. И.В.Курчатова. Однако технические и научные проблемы пока не позволили создать реальную промышленную термоядерную установку.

Солнечные электростанции. Земля получает ежегодно от Солнца 1017 Вт энергии, что в 20000 раз больше современного уровня потребления. Естественным является преобразование солнечной энергии в тепловую. Такие установки используются человеком издревле. Известен и достаточно простой способ преобразования солнечной энергии в электрическую - с помощью фотоэлементов. Поэтому работы по созданию солнечных электростанций (СЭлС) проводятся во многих странах. Особое значение при этом имеет экологическая чистота и возобновляемость такого энергоресурса. В результате за последние 50 лет сооружены десятки СЭлС в США, Австралии, Италии, Океании и других, климатически пригодных регионах. В СССР была построена Крымская СЭС мощностью 5 МВт, проектировалась станция в Средней Азии общей мощностью 200 МВт.

Однако существуют значительные трудности по созданию и использованию СЭлС, которые не позволяют пока солнечным электрическим станциям в полном объеме конкурировать с ТЭС и ГЭС. Это непостоянство солнечного излучения по времени суток, года и в зависимости от погодных условий; низкая плотность излучения у поверхности Земли; недостаточные технические характеристики существующих фотоэлементов и сложность их утилизации. КПД установок СЭлС составляет в настоящее время около I5%, а получение значительных мощностей связано с размещением оборудования на больших территориях в десятки квадратных километров и соответствующим расходом материалов. Тем не менее, работы по совершенствованию СЭлС продолжается.

Геотермальные станции (ГеоТЭС). Такие станции в качестве источника энергии используют тепло земных недр. Основные типы ГеоТЭС работают на горячей воде под давлением, на воде с паром, на сухом паре или газе (петротермальная энергия).

В среднем на каждые 30...40 м в глубь Земли температура возрастает на 1 0С и на глубине 10…15 километров она достигает 1000- 1200 0С. В некоторых же частях планеты температура достаточно высока в непосредственной близости от поверхности. В этих местах бьют мощные горячие подземные воды, пар, газ. Здесь могут быть размещены ГеоТЭС. Например, в долине Гейзеров в США общая мощность ГеоТЭС составляет 900 МВт, ГеоТЭС Ларделло в Италии мощностью 420 МВт, станция Вайракет в Новой Зеландии - 290 МВт. Работают достаточно мощные ГеоТЭС в Мексике, Японии, Исландии и в других странах. Российская ГеоТЭС на Камчатке имеет мощность 5 МВт.

Экологическая чистота, возобновляемость тепловой энергии Земли, достаточная простота конструкции являются несомненными достоинствами ГеоТЭС.

Недостатки геотермальных станций - жесткая привязка к месту выхода тепла на поверхность Земли и ограниченные параметры рабочего тела по давлению и температуре.

Приливные электростанции (ПЭС). Современные ПЭС используют фазу прилива и отлива, их агрегаты (турбины) обратимы и работают при движении воды из моря в залив и наоборот (рис.1.16). Такие установки способны работать в турбинном и насосном режиме.

ПЭС работают в России (Кислогубская, 400 кВт), Японии, Франции и других странах. Наиболее мощная ?/p>