Обработка речевых сигналов

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

имания. Кроме этого очень важно сохранить значимые свойства и характеристики речи диктора, источник речевой информации, а также обстоятельства получения информации. Средства и технологии шумоочистки обеспечивают доведение качества и разборчивости речевого сигнала до уровня, приемлемого для его комфортного прослушивания и понимания, с сохранением значимых свойств и характеристик речи диктора, источника речевой информации, а также обстоятельств получения информации, что является очень важным фактором.

Технологии шумоочистки речевых сигналов классифицируются по типу искажения:

1)BABBLE NOISE - технология подавления шума толпы

)MUSIC NOISE - технология подавления шума музыки

)NONSTATIONARY NOISE - технология подавления нестационарных шумов

)PULSE NOISE - технология подавления импульсных шумов

)TONAL NOISE - технология подавления тональные помех

)WIDEBAND NOISE - технология подавления широкополосных шумов

)GSM HINDRANCE - технология подавления наводки мобильных телефонов

)CLIPPING - клиппирование сигнала

)REVERBERATION&NOISE - реверберация

 

3 Возможность использования нейросетей для построения системы распознавания речи

 

Классификация - это одна из основных для нейросетей задач. Причем нейросеть может выполнять классификацию даже при обучении без учителя (правда, при этом образующиеся классы не имеют смысла, но ничто не мешает в дальнейшем ассоциировать их с другими классами, представляющими другой тип информации - фактически наделить их смыслом). Любой речевой сигнал можно представить как вектор в каком-либо параметрическом пространстве, затем этот вектор может быть запомнен в нейросети. Одна из моделей нейросети, обучающаяся без учителя - это самоорганизующаяся карта признаков Кохонена. В ней для множества входных сигналов формируется нейронные ансамбли, представляющие эти сигналы. Этот алгоритм обладает способностью к статистическому усреднению, т.е. решается проблема с вариативностью речи. Как и многие другие нейросетевые алгоритмы, он осуществляет параллельную обработку информации, т.е. одновременно работают все нейроны. Тем самым решается проблема со скоростью распознавания - обычно время работы нейросети составляет несколько итераций.

Далее, на основе нейросетей легко строятся иерархические многоуровневые структуры, при этом сохраняется их прозрачность (возможность их раздельного анализа). Так как фактически речь является составной, т.е. разбивается на фразы, слова, буквы, звуки, то и систему распознавания речи логично строить иерархическую.

Наконец, ещё одним важным свойством нейросетей является гибкость архитектуры. Под этим может быть не совсем точным термином я имею в виду то, что фактически алгоритм работы нейросети определяется её архитектурой. Автоматическое создание алгоритмов - это мечта уже нескольких десятилетий. Но создание алгоритмов на языках программирования пока под силу только человеку. Конечно, созданы специальные языки, позволяющие выполнять автоматическую генерацию алгоритмов, но и они не намного упрощают эту задачу. А в нейросетях генерация нового алгоритма достигается простым изменением её архитектуры. При этом возможно получить совершенно новое решение задачи. Введя корректное правило отбора, определяющее, лучше или хуже новая нейросеть решает задачу, и правила модификации нейросети, можно в конце концов получить нейросеть, которая решит задачу верно. Все нейросетевые модели, объединенные такой парадигмой, образуют множество генетических алгоритмов. При этом очень четко прослеживается связь генетических алгоритмов и эволюционной теории (отсюда и характерные термины: популяция, гены, родители-потомки, скрещивание, мутация). Таким образом, существует возможность создания таких нейросетей, которые не были изучены исследователями или не поддаются аналитическому изучению, но тем не менее успешно решают задачу.

 

.1 Нейросетевое сравнение на основе простых персептронов

 

Искусственный нейрон

Несмотря на большое разнообразие вариантов нейронных сетей, все они имеют общие черты. Так, все они, так же, как и мозг человека, состоят из большого числа связанных между собой однотипных элементов - нейронов, которые имитируют нейроны головного мозга. На рисунке 4.7 показана схема нейрона.

 

Рисунок 3.1 - Схема нейрона

Из рисунка видно, что искусственный нейрон, так же, как и живой, состоит из синапсов, связывающих входы нейрона с ядром; ядра нейрона, которое осуществляет обработку входных сигналов и аксона, который связывает нейрон с нейронами следующего слоя. Каждый синапс имеет вес, который определяет, насколько соответствующий вход нейрона влияет на его состояние. Состояние нейрона определяется по формуле

 

 

где n - число входов нейрона i - значение i-го входа нейрона i - вес i-го синапса

Затем определяется значение аксона нейрона по формуле

 

Y = f(S)

 

где f - некоторая функция, которая называется активационной. Наиболее часто в качестве активационной функции используется так называемый сигмоид, который имеет следующий вид

 

 

Основное достоинство этой функции в том, что она дифференцируема на всей оси абсцисс и имеет очень простую производную

 

 

При уменьшении параметра a сигмоид становится более пологим, вырождаясь в горизонтальную линию на уровне 0,5 при a=0. При увеличении a сигмоид все больше приближается к функции единичного скачка.

Хотя один нейрон и способен выпо