Обработка давлением

Информация - Разное

Другие материалы по предмету Разное

в два и более раза (рис . 5) .

Степень деформации. Показателем степени деформации в обработке давлением наиболее часто принимается относительная и логарифмическая деформация. Наиболее распространено использование относительных деформаций, например, для растяжения:

д=(l-lo)/lo

где lo и l - начальная и конечная длина образца при растяжении.

Деформирование при повышенных температурах. С целью уменьшения деформирующего усилия и повышения пластичности обрабатываемый металл нагревают. При повышении температуры деформируемого металла в нем возникают процессы противоположные упрочнению - возврат и рекристаллизация.

При нагреве до температуры (0,25-0,30)К абсолютной температуры плавления металла амплитуда колебания атомов при деформировании настолько увеличивается, что они могут занимать новые положения устойчивого равновесия. Это явление называют возвратом. Возврат приводит к некоторому уменьшению сопротивления деформированию, однако не влияет на величину, форму и размеры зерна. Поэтому возврат не препятствует образованию текстуры. С увеличением температуры скорость возврата увеличивается, увеличение скорости деформирования может уменьшить скорость возврата. Возврат происходит также и 'при нагреве ранее холоднодеформированного металла.

При температуре 0,4К и более в металле протекает процесс рекристаллизации. Рекристаллизация заключается в появлении зародышей, возникновении и росте новых зерен взамен деформированных. Возможность рекристаллизации обусловливается при увеличении температуры повышением энергетического баланса атомов, при котором атомы получают возможность перегруппировок и интенсивного обмена местами. При рекристаллизации получают равноосные зерна; величина образовавшихся зерен зависит от температуры, степени деформации и скорости деформации (рис. 6 ).

Процессу рекристаллизации можно подвергать холоднодеформированные металлы.

Влияние горячей пластической деформации на свойства металла. Заготовки с литой структурой обычно подвергают горячей обработке давлением. Литая структура характеризуется крупными кристаллами первичной кристаллизации, по границам которых располагаются прослойки, обогащенные примесями и неметаллическими включениями.

Деформирование литой структуры приводит к дроблению кристаллитов и вытягиванию их в направлении наиболее интенсивного течения металла. Одновременно происходит и вытягивание в том же направлении межкристаллитных прослоек, содержащих неметаллические включения. При достаточно большой степени деформации неметаллические включения принимают форму прядей вытянутых в направлении интенсивного течения металла, образуя полосчатость макроструктуры (полосчатости микроструктуры при этом нет).

Полосчатость макроструктуры приводит к анизотропии металла. Показатели пластичности (предел текучести и удлинение) вдоль и поперек волокон значительно отличаются, причем разница их значений возрастает с увеличением степени деформации. Прочностные характеристики металла вдоль и поперек волокон отличаются незначительно, а увеличение степени деформации на их величине практически не сказывается.

При горячей обработке металлов давлением стремятся вести процесс деформирования таким образом, чтобы волокна макроструктуры были расположены в направлениях наибольших нормальных напряжений в условиях работы детали.

Виды деформаций. В зависимости от возможности протекания в металле при деформации процессов упрочнения или разупрочнения различают несколько видов деформации.

Горячая деформация - деформация, при которой происходит полная рекристаллизация деформируемого металла.

Холодная деформация - деформация при которой отсутствуют возврат и рекристаллизация.

Различают и промежуточные виды деформаций: неполная горячая деформация - деформация, при которой рекристаллизация проходит не полностью; неполная холодная деформация - деформация, при которой происходит только возврат.

Основные закономерности пластической деформации

1. Закон постоянства объема: объем металла при его пластическом деформировании остается неизменным.

2. Закон наличия упругой деформации при пластическом деформировании. При любом пластическом деформировании общая деформация складывается из упругой и остаточной

3. Закон остаточных напряжений. При обработке давлением однородная пластическая деформация практически не имеет места, хотя при решении она принимается равномерной. Неоднородность деформаций обусловлена контактным трением, неравномерным распределением температур, неоднородностью химического состава и механических свойств, формой деформируемого тела и деформирующего инструмента. При неравномерной деформации отдельные зерна деформируются по-разному. Однако благодаря связи между собой они не могут самостоятельно изменять размеры. В результате взаимного влияния возникают напряжения со стороны более деформированных участков, которые будут увеличивать деформацию менее деформированных участков и наоборот. Эти напряжения называются дополнительными. Дополнительные напряжения бывают трех видов:

напряжения первого рода - напряжения, уравновешивающиеся между отдельными частями тела,

напряжения второго рода - напряжения уравновешивающиеся между отдельными зернами,

напряжения третьего рода - напряжения уравновешивающиеся между отдельными элементами зерна.

После снятия деформиру