О побочном событии в лабораторном эксперименте

Курсовой проект - История

Другие курсовые по предмету История

О побочном событии в лабораторном эксперименте

Василий Голота

В исследовании частных приложений теории относительности экспериментальная физика значительно опережает теоретическую, которой все чаще приходится объяснять причины расхождения своих предсказаний с результатами практического опыта.

Такое взаимоотношение теории и эксперимента не может оставаться терпимым, как не может и длиться бесконечно, потому что экспериментальная физика ввергла человечество в ситуацию, при которой любой пуск современного ускорителя заряженных частиц может закончиться синтезом сверхтяжелого вещества, находящегося по отношению к ядерному оружию на более высоком уровне, чем атомная бомба в сравнении с каменным топором.

Курчатов и Оппенгеймер, Сахаров и Теллер имели в своем распоряжении десятилетия для осмысления результатов изобретения атомной и водородной бомб, мы же должны понять и правильно оценить сущность очередного изобретения до наступления события, под горизонтом которого свернется и исчезнет само понятие времени.

Более 50-ти лет продолжается напряженное соревнование между лабораториями Дубны, Ливермора, Беркли и Дармштадта в синтезе тяжелых трансурановых элементов. Лаборатории развиваются, оснащаются мощной техникой и требуют новой сложной работы.

Нобелевский комитет выдал премию за создание нейтронного лазера, готовится расфасовка нейтронов по бутылкам с отражающими стенками, словно в лабораториях высоких энергий варится пиво. Соревнование лабораторий выходит за рамки задач прошлых лет (синтез СТЭ) и вплотную приближается к барьеру Великого объединения.

Качественный скачок в изучении атомного ядра назрел

Неблагоприятный прогноз основывается на том, что ядерная физика находится на острие научно-технического прогресса, а прогресс, как известно, неостановим. Экстраполяция темпов развития техники экспериментов на ближайшее будущее убеждает в неизбежности логически закономерного, хотя и непреднамеренного уничтожения единственной обитаемой планеты Солнечной системы. Это может случиться из-за так называемого деконфаймента во время синтеза сверхтяжелых ядер, а также во время генерации сверхплотных пучков нейтронов или при получении нейтронного вещества, т.е. макроскопического количества вещества с плотностью атомного ядра (2,81014г/см3).

Вольный или невольный, закономерный или случайный, ожидаемый или побочный деконфаймент или коллапс частицы земного вещества подготовлен материальной базой научных исследований и приходится лишь удивляться тому, что до сего дня еще не получен этот конечный продукт эволюции звезд. Следует ожидать, что синтезированный на Земле такой продукт начнет присоединять к себе вещество нашей планеты безостановочно. Во всяком случае, астрофизика не предполагает мирного сосуществования обычного молекулярного вещества и нейтронного, тем более чернодырочного.

Нужно также принимать во внимание известные предостережения Бора, Эйнштейна и Харитона об опасности неуемного любопытства при изучении атомного ядра.

Оснований для беспокойства накопилось предостаточно

Первое. Научные журналы последних двух лет переполнены сообщениями о синтезе нейтронных экзотических и супердеформированных ядер, состоящих из нескольких протонов и большого числа нейтронов, а также о достижениях в области производства, накопления, хранения и перемещения ультрахолодных нейтронов (УХН) из сосуда в сосуд.

Ультрахолодные (медленные) нейтроны генерируются СВЗ (спектрометрами по времени замедления) импульсными пучками высокой плотности, в которых они летят очень медленно (менее 10м/с), благодаря чему резко (примерно в 10000 раз против показателя быстрых нейтронов) увеличивается сечение захвата их ядрами облучаемого вещества.

Качественный скачок в области производства сверхплотных пучков УХН (S=61015нейтрон/с) ожидается в момент пуска строящегося в Институте ядерных исследований РАН Большого СВЗ на базе линейного ускорителя протонов Московской мезонной фабрики. Масса используемого для получения УХН сверхчистого свинца (Pb=99,99%) на этом СВЗ составит более 100т. Аналогичные эксперименты проводятся по программе IREN на СВЗОИЯИ в Дубне, где плотность импульсного пучка нейтронов достигает 11015нейтрон/с при мощности 10кВт и частоте импульсов 150Гц.

Со времени открытия нейтрона Чедвиком подмечено, что ядра первого десятка элементов периодической системы Менделеева содержат нейтронов столько же, сколько и протонов, а последнего в 1,5 раза больше. При массовых числах химических элементов свыше 200а.е.м. протонообогащенные изотопы почти не встречаются, а кривая распространенности нейтроноизбыточных резко поднимается вверх и обрывается на краю диаграммы (Ю.Э.Пенионжкевич).

Слишком сильная зависимость содержания нейтронов в ядре от его атомной массы определенно предостерегает от деконфаймента. Эта зависимость предупреждает о существовании критического барьера, за которым ядра легких элементов будут самопроизвольно ассимилироваться компактной массой нейтронного (гиперонного) вещества.

Нейтроны любой энергии могут легко проникать в ядро, потому что им не нужно преодолевать барьер кулоновского отталкивания, следовательно, и ядра легких элементов будут беспрепятственно падать (аккрецироваться) на нейтронное вещество. Маломощная электронная оболочка легких ядер не защитит земное вещество от нейтронного коллапса, потому что релятивистскую скорость снаряда-ядра заменит