Нейросеревые модели

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

твительности пластических синаптических контактов. Выбором весов достигается та или иная интегральная функция нейрона. В блоке суммирования происходит накопление общего входного сигнала (обычно обозначаемого символом net), равного взвешенной сумме входов:

 

 

В модели Маккалока и Питтса отсутствуют временные задержки входных сигналов, поэтому значение net определяет полное внешнее возбуждение, воспринятое нейроном. Отклик нейрон далее описывается по принципу "все или ничего", т. е. переменная подвергается нелинейному пороговому преобразованию, при котором выход (состояние активации нейрона) Y устанавливается равным единице, если net > Q, и Y=0 в обратном случае. Значение порога Q (часто полагаемое равным нулю) также хранится в локальной памяти.

Важным развитием теории формального нейрона является переход к аналоговым (непрерывным) сигналам, а также к различным типам нелинейных переходных функций. Опишем наиболее широко используемые типы переходных функций Y=f(net).

Пороговая функция (рассмотренная Маккалоком и Питтсом):

 

 

Линейная функция, а также ее вариант - линейная функция с погашением отрицательных сигналов:

 

 

Сигмоидальная функция:

 

Сигмоидальная функция обладает избирательной чувствительностью к сигналам разной интенсивности, что соответствует биологическим данным. Наибольшая чувствительность наблюдается вблизи порога, где малые изменения сигнала net приводят к ощутимым изменениям выхода. Напротив, к вариациям сигнала в областях значительно выше или ниже порогового уровня сигмоидальная функция не чувствительна, так как ее производная при больших и малых аргументах стремится к нулю.

 

3.6 Обучение нейрона детектированию границы черное-белое

 

Способность формального нейрона к обучению проявляется в возможности изменения значений вектора весов W, соответствующей пластичности синапсов биологических нейронов. Пусть имеется образ, составленный из одномерной цепочки черных и белых клеток. Зачерненные клетки соответствуют единичному сигналу, а белые клетки - нулевому. Сигнал на входах формального нейрона устанавливается равным значениям пар примыкающих клеток рассматриваемого образа. Нейрон обучается всякий раз возбуждаться и выдавать единичный выходной сигнал, если его первый вход соединен с белой клеткой, а второй (правый) - с черной. Таким образом, нейрон должен служить детектором границы перехода от светлого к темному тону образа.

 

 

Формальный нейрон с двумя входами, занятый обработкой образа в виде одномерной цепочки черных и белых клеток. Функция, выполняемая нейроном, определяется следующей таблицей:

 

 

 

 

 

 

 

Вход 1Вход 2Требуемый выход1101000110003.7 Классификация нейронных сетей

. по типу входной информации:

Аналоговые нейронные сети (используют информацию в форме действительных чисел);

двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде).

II. по характеру обучения:

Обучение с учителем - выходное пространство решений нейронной сети известно;

Обучение без учителя - нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися;

Обучение с подкреплением - система назначения штрафов и поощрений от среды.

III. по характеру настройки синапсов:

Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом: где W - весовые коэффициенты сети);

сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть, где W - весовые коэффициенты сети).

IV. по времени передачи сигнала:

В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей wij, но и от времени передачи импульса (сигнала) по каналам связи ?ij. По этому в общем виде активирующая (передающая) функция связи cij от элемента ui к элементу uj имеет вид: . Тогда синхронной сетью называют такую сеть, у которой время передачи ?ij каждой связи равно либо нулю, либо фиксированной постоянной ?. Асинхронной называют такую сеть у которой время передачи ?ij для каждой связи между элементами ui и uj свое, но тоже постоянное.

V. по характеру связей:

сети прямого распространения (персептрон Розенблатта и т.д.);

рекуррентные нейронные сети(сеть Хопфилда, сеть Коско и т.д.).

Другие известные типы связей: многослойный персептрон; сеть Джордана, сеть Элмана, сеть Хэмминга, сеть Ворда, сеть Кохонена, нейронный газ, когнитрон, неокогнитрон, хаотическая нейронная сеть, осцилляторная нейронная сеть, сеть встречного распространения, RBF-сеть, сеть обобщенной регрессии, вероятностная сеть, сиамская нейронная сеть, сети адаптивного резонанса.

 

4. Персептрон Розенблатта

 

Одной из первых искусственных сетей, способных к перцепции (восприятию) и формированию реакции на воспринятый стимул, явился PERCEPTRON Розенблатта (F.Rosenblatt, 1957). Персептрон рассматривался его автором не как конкретное техническое вычислительное устройство, а как модель работы мозга.

 

Элементарный персептрон Розенблатта.

 

Простейший классический персептрон содержит нейроподобные элементы трех типов, назначение которых в целом соответствует нейронам рефлекторной нейронной сети, рас