Нейросеревые модели

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

?ейроны нескольких различных типов: командные нейроны-переключатели, пороговые нейроны, нейронные слои с латеральным торможением, работающие по принципу "победитель забирает все". Априорное разделение функций нейронов значительно упрощает обучение, так как сеть изначально структурно соответствует задаче.

.Преимущественное использование методов обучения без учителя, за счет самоорганизации. Эти методы имеют глубокие биологические основания, они обеспечивают локальный характер обучения. Это позволяет не применять глобальную связность сети. С учителем обучаются только внешние, выходные слои нейронов, причем роль учителя часто сводится только к общей экспертной оценке качества работы сети.

.Ориентация исследований и архитектур непосредственно на приложения. Модели общего характера, такие как сеть Хопфилда или многослойный персептрон, в основном представляют научный интерес, так как допускают относительно полное теоретическое исследование.

Этот список является далеко не полным.

 

12.2 Программное обеспечение

 

К настоящему времени сформировался обширный рынок нейросетевых продуктов. Подавляющее большинство продуктов представлено в виде моделирующего программного обеспечения. Ведущие фирмы разрабатывают также и специализированные нейрочипы или нейроплаты в виде приставок к обычным ЭВМ (как правило, персональным ЭВМ линии IBM PC AT). При этом программы могут работать как без нейро-приставок, так и с ними. В последнем случае быстродействие гибридной ЭВМ возрастает в сотни и тысячи раз. Некоторые наиболее извесные и популярные нейросистемы: NeuralWorks Professional II Plus, ExploreNet 3000, NeuroShell 2.0

 

12.3 Многообразие применения

 

Нейронные сети - универсальные аппроксимирующие устройства и могут с любой точностью имитировать любой непрерывный автомат. Результаты работ М. Доррера и др. дают подход к раскрытию механизма интуиции нейронных сетей, проявляющейся при решении ими психодиагностических задач. Нейронные сети широко используются в химических и биохимических исследованиях. Так же важна их роль при прогнозировании динамики фондовых рынков и других экономических задач. Возможно применение нейросетевых моделей в составе геоинформационных систем. И, конечно, в решении различных математических и физических задач и т.д.

 

Вывод

 

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения, обучение нейронных сетей - это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть - способ решения проблемы эффективного параллелизма. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения - одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или зашумленных, частично искаженных данных.

Следует отметить, что вычислительные системы, основанные на искусственных нейронных сетях, обладают рядом качеств, которые присущи мозгу человека: массовый параллелизм; распределённое представление информации и вычисления; способность к обучению и обобщению; адаптивность; свойство контекстуальной обработки информации; толерантность к ошибкам; низкое энергопотребление.

В заключение можно сказать, что в данной работе были рассмотрены историческое формирование и развитие нейронауки, общие основы и введения в область искусственных нейронных систем и нейросетевого моделирования, выделены виды их реализации и самого процесса аппаратного восприятия, а так же описаны различные виды нейросетей и их особенности. Подчеркивается важность нейросетевых технологий в современной науке и жизни, которая объясняется многообразием их применения; уделяется внимание продолжающемуся развитию искусственной нейроиндустрии.

 

Практическая часть

 

Лабораторная работа № 1

Искусственные нейронные сети

Цель работ?/p>