Амплитудный накопитель некогерентно рассеянного сигнала

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

?ваемом объеме и стационарна. Реальные условия измерений не соответствуют таким предположениям, и сами измерения сопровождаются статистической погрешностью, связанной с наличием шумов при приеме слабого сигнала и с самой шумовой природой сигнала. Для повышения точности оценки параметров сигнала используется его временное накопление в течение десятков секунд или даже минут, с последующим высотно-временным сглаживанием результатов.

Для облегчения работы ЭВМ решение задачи разделено на два этапа. На первом из них по аналитическим выражениям рассчитывается набор теоретических АКФ для всех возможных вариантов сочетания ионосферных параметров. При этом в первую очередь учитывается техническая возможность имеющейся вычислительной техники. Критерий - подготовленные таким образом автокорреляционные функции при решении обратной задачи должны обеспечить максимальную точность подобия при поиске соответствия между измеренными и теоретическими АКФ. Это подобие и рассматривается на втором этапе, когда проводится непосредственно сравнение каждой АКФ, полученной в аппаратуре, с библиотечным набором и выносится решение о наилучшем их согласии.

Ниже приведен график, иллюстрирующий получение мощности сигнала НР вдоль развертки дальности и накопление результата в N = 100 развертках.

 

Рисунок 1.1 - Сигнал, рассеянный на тепловых флуктуациях электронной плотности ионосферы, его огибающая и результат накопления в N развертках

 

С помощью антенны на радиолокационном комплексе мы посылаем в ионосферу зондирующий сигнал, а затем отраженная смесь сигнал-шум поступает в приемное устройство, усиливается и с помощью АЦП преобразуется в эквивалентный цифровой код.

Каждому цифровому коду соответствует своя точка на верхнем графике рис. 1.1. Для наглядности эти точки соединяют и получают высотный ход сигнала до 2000 км. Из этих данных получают необходимую информацию об автокорреляционной функции сигнала НР. Эта информация образуется в специализированном вычислительном устройстве радара путем перемножения цифровых отсчетов в нескольких каналах и предназначена для дальнейшего определения высотной зависимости электронной концентрации, а также высотных температурных зависимостей ионов и электронов. Такая операция производится одновременно для всего диапазона исследуемых высот.

В процессе получения АКФ исходный массив обрабатывается по алгоритму, который описывается следующей формулой:

Если расположить вдоль высоты все полученные точки АКФ, полученные, например, в течении 1 мин, то они образуют вид, изображенный на рис. 1.2:

 

Рисунок 1.2 - Высотное распределение ординат АКФ.

 

Результаты расчета ионосферных параметров представлены ниже, на рис. 1.3. Экспериментальные данные включают в себя как первичные данные, так и вычисленные по ним вторичные данные. Сюда относятся высотные вариации вертикальной составляющей скорости дрейфа плазмы Vdr, ионной Ti и электронной Te температур, а также электронной концентрации Ne.

В последнее время вычисляется и информация о высотно-временной зависимости ионов гелия He+, водорода H+ и кислорода О+, а также и данными о содержании тяжелых ионов М+ на малых высотах.

 

Рисунок 1.3 - Набор АКФ, спектров и некоторых ионосферных параметров, определяемых методом НР

Однако правильному определению параметров ионосферы мешают периодически появляющиеся отражения от летательных объектов в зоне действия луча радиолокатора, которые если имеют резко выраженный характер, то в результате наглядно искажаются результаты при вычислении всех ординат.

 

Рисунок 1.4 - Отметка от цели на высоте на высоте ~1000 км

 

Ярко выраженный характер цели происходит при присутствии цели, например, в 50% от общего времени накопления сеанса. Если зафиксировать входной сигнал в нескольких расположенный друг за другом радиолокационных развертках дальности, то этот случай представлен на рис. 1.5.

 

Рисунок 1.5 - Пример появления отражений от целей в некоторых развертках

В процессе расчета ионосферных параметров в этом случае на месте нахождения отражения возникает явно аномальный характер:

 

Рисунок 1.6 - Пример явно неправильного расчета ионосферных данных на высоте 1000 км.

 

В случае же появления некоторой цели в луче радиолокатора в течение меньшего времени - 5%-10% от времени накопления - отражения на высоте ~1000 км вроде бы не заметно.

 

Рисунок 1.7 - Пример появления слабых отражений от целей

 

Однако расчет ионосферных параметров все так же показывает, что на этой высоте рассчитанные данные все равно имеют низкую точность измерений.

 

Рисунок 1.8 - Пример слабо выраженного эффекта присутствия цели.

 

.2 Предложение о введении дополнительного канала обработки

радар некогерентный рассеяние накопитель

Вывод, который возникает в результате вышеприведенного анализа, состоит в том, что в процессе вычисления ионосферных сигналов необходимо осуществлять процедуру селекции сигнала от целей. Почти каждый накопленный сеанс обязательно будет содержать отклик от цели в явном или неявном виде, так как помеховая ситуация, напряженность которой иллюстрирует нижеследующая таблица о наявности метеорных потоков, еще и усугубляется загрязненностью космического пространства на высотах 500-1500 км, где присутствуют космические корабли, спутники и всевозможный космический мусор