Налоговое планирование и прогнозирование

Дипломная работа - Экономика

Другие дипломы по предмету Экономика

и накладываются механически: предполагается опосредованное влияние компонент многомерного временного ряда друг на друга, т. е. на первую компоненту не влияет никакая другая, на вторую компоненту влияет только первая, на третью - только первые две и т. д. В противоположность этому в структурной форме векторной авторегрессии связи на компоненты матрицы накладываются исходя из результатов экономической теории.

Прогнозирование на основе опережающих экономических индикаторов предполагает создание агрегатной величины, ход тренда которой опережает во времени ход исследуемого показателя. Как известно из экономической теории, изменения одних переменных объективно должны предшествовать изменениям других. Выбирается несколько переменных, опережающих исследуемую величину. Далее из выбранных переменных строится некоторый индекс, по значению которого строится прогноз исследуемого показателя.

Типичным примером прогнозных моделей с несколькими переменными являются макроэкономические модели налоговых поступлений.

При построении прогнозных значений налоговых поступлений, как правило, приходится предварительно прогнозировать объясняющие переменные с использованием различных методик, включая экономические методы, и только потом прогнозировать сами налоговые поступления. При этом можно использовать прогнозы объясняющих переменных, построенные определенными организациями, или же существующие экспертные оценки.

Эконометрические модели, основанные на авторегрессионных процессах, следует, на наш взгляд, рассматривать наряду с моделями для процессов со стохастическим трендом (TS-модели) и моделями для процессов с детерминистическим трендом (DS-модели).

Модель оценки поступлений (Revenue Estimating Model, REM) представляет собой модель-калькулятор, для прогнозирования налоговых поступлений исходя из информации о налоговых поступлениях за предыдущие месяцы. В REM-модели расчет прогнозных значений проводится в постоянных ценах и основывается на значениях поступлений за соответствующий период базового года с учетом возможных изменений ставок и базы налогов. Имевшие место изменения учитываются простой корректировкой на соответствующий множитель. Кроме того, в REM-модели осуществляется дополнительная корректировка прогнозных значений на относительное изменение поступлений текущего года по сравнению с предыдущим годом. Чем ближе прогноз поступлений к концу текущего года, тем в большей степени он опирается на информацию о поступлениях те куше го года.

Замечено, что TS-модели по сравнению с DS-моделями дают более качественный одношаговый прогноз для поступлений по подоходному налогу. Прогнозы подоходного налога, полученные с помощью этих эконометрических моделей (TS- и DS-моделей), лучше прогнозов, построенных по модели оценки поступлений (REM). Для прогноза поступлений налога на прибыль эконометрические модели (в данном случае TS- и DS-модели считаются равнозначными) уступают REM-модели. Для прогноза поступления налога на добавленную стоимость, как и в случае прогноза подоходного налога, качество прогнозов с применением TS-моделей также считается несколько выше прогнозов с применением DS- и REM-моделей. Для расчета прогнозных значений суммарных налоговых поступлений в консолидированный бюджет Российской Федерации REM-модель дает существенно более качественный прогноз, чем эконометрические модели. Наконец, для суммарных налоговых поступлений в федеральный бюджет Российской Федерации наилучшие характеристики дает прогноз на основе эконометрических моделей, а не REM-модели.

Качество одношаговых прогнозов налоговых обязательств с помощью макроэкономических моделей улучшится, если в уравнение добавить значимые объясняющие переменные.

Среди рассмотренных методов построения одношаговых прогнозов налоговых обязательств наиболее точные результаты дает метод, в котором на каждом шаге производится переоценка коэффициентов уравнения.

Наиболее точными считаются результаты прогнозов налоговых обязательств для налога на прибыль и подоходного налога. Они не хуже прогнозов соответствующих налоговых поступлений, полученных на основании ARMA и REM-моделей.[5]

Точный прогноз налоговых поступлений в бюджетную систему страны - это одно из главных условий успешной работы налоговых органов. В налоговых органах наиболее часто приходится иметь дело с текущим регулярным прогнозом, используемым также при формировании месячных заданий подчиненным территориальным инспекциям. Прогнозные значения на окончание предстоящего периода определяются обычно по предыстории с помощью различных типов прогнозов. Предшествующие прогнозному значению величины зависят в значительной степени от ряда случайных событий. К сожалению, в настоящее время в территориальных налоговых органах отсутствуют обоснованные методы прогноза в условиях случайных искажений анализируемой информации, а применяемые методы прогноза налоговых поступлений не учитывают специфику работы конкретных налоговых органов.

 

 

1.2 Методы оценки налогового потенциала регионов

 

Оценка и прогнозирование налогового потенциала позволяют совершенствовать процессы планирования налоговых поступлений на различных уровнях бюджетной системы, выявлять и сравнивать налоговые возможности и уровень налоговой активности регионов и тем самым могут стать одним из факторов, характеризующих социально-экономическое развитие субъектов Российской Федерации.

Под налоговым