Может ли компьютер мыслить
Курсовой проект - Педагогика
Другие курсовые по предмету Педагогика
грантов. Но такого финансирования, как, скажем, при реализации атомного проекта или освоении космоса, пока нет. Хотя, стоит сказать, в период своего правления американский президент Билл Клинтон выделил миллиард долларов на развитие нанотехнологий, в том числе и квантовых компьютеров.
Квантовые компьютеры создают буквально на штучных ионах или даже одной молекуле - сотня ионов -вот и весь компьютер. Правда, частицы помещены в специальную оболочку с маленькими электродиками размером меньше сантиметра и сечением в доли микрона. В плане энергопоглощения устройство будет очень экономичное.
Можно ли говорить о замене в будущем электронных компьютеров на квантовые? Большинство учёных считают, что будут и те, и другие. Возможно, в обычном компьютере появится специальный квантовый процессор. Если нужно решить сверхзадачу, то будет использоваться этот процессор, а для остальных случаев достаточно обычного. То есть квантовые компьютеры станут сверхмощным дополнением к вычислительным машинам. И благодаря этому дополнению наука будет иметь мощнейшее орудие для своего дальнейшего развития, человечество получит колоссальные возможности. Станут реальными вещи, которые раньше казались фантастикой.
2.2 Нейрокомпьютер
Наряду с развитием персональных ЭВМ, сетей ЭВМ и высокопроизводительных суперЭВМ традиционной архитектуры в последние годы существенно повысился интерес к разработке и созданию компьютеров нетрадиционного типа и, прежде всего, нейрокомпьютеров. Связано это с тем, что, несмотря на высокую производительность современных суперЭВМ, приближающуюся к предельно допустимой, все еще остается много практически важных проблем, для решения которых нужны более мощные и более гибкие вычислительные средства. Они необходимы для глобального моделирования процессов в экосистемах, при решении задач нейрофизиологии, искусственного интеллекта, метеорологии, сейсмологии и т. п. Необходимы они и при создании систем управления адаптивных интеллектуальных роботов.
Нейрокомпьютер - это ЭВМ нового поколения, в которой аналогом программирования является перестройка структуры в ходе обучения. Эффективность его работы достигается специфической архитектурой, где элементы работают параллельно. Создание нейрокомпьютера базируется на основе изучения организации нейронных структур мозга.
Нейроинтеллект - это модель реальной сети нейронов, представляющая собой иерархически организованное параллельное соединение простых адаптивных элементов, взаимодействующих с объектами внешнего мира аналогично тому, как это имеет место в биологических объектах. Основные особенности нейрокомпьютеров заключаются в их способности к самоорганизации и обучению на примерах (самопрограммирование и самоорганизация). Наиболее перспективной областью применения является робототехника - создание роботов с элементами искусственного интеллекта. Для создания нейрокомпьютера необходимо решить вопрос об отдельных элементах, топологии связей между элементами и правилах изменения весов связей между элементами.
В качестве отдельных элементов нейрокомпьютера были представлены: предетекторы, детекторы новизны и тождества, модуляторы, мнемонические элементы, семантические элементы и командные нейроподобные элементы.
Основные принципы топологии связей между элементами определяются принципом кодирования, основаннoм на том, что отдельным значениям параметра кодируемого сигнала ставятся в соответствие определенные меченые линии. Правило изменения весов связей определяется принципом Хебба, гласящим, что синоптические контакты, задействованным непосредственно перед разрывом нейрона, повышают свою эффективность. Синапсы, задействованные, но не сопровождаемые разрядом нейрона ее снижают.
Бортовые ЭВМ таких роботов должны воспринимать большие объемы информации, поступающей от многих параллельно функционирующих датчиков, эффективно обрабатывать эту информацию и формировать управляющие воздействия на исполнительные системы в реальном масштабе времени. Более того, управляющие компьютеры интеллектуальных роботов должны оперативно решать задачи распознавания образов, самообучения, самооптимизации, самопрограммирования, т. е. те задачи, которые весьма сложны для традиционных ЭВМ и суперЭВМ. Поэтому остается актуальной необходимость в поиске новых подходов к построению высокопроизводительных ЭВМ нетрадиционной архитектуры. Среди таких подходов центральное место занимает нейрокомпьютерный подход.
Его суть состоит в разработке принципов построения новых мозгоподобных архитектур сверхпроизводительных вычислительных систем нейрокомпьютеров. Подобно мозгу, такие системы должны обладать глобальным параллелизмом, самообучением, самооптимизацией, самопрограммированием и другими свойствами биологических систем. Ожидается, что нейрокомпьютеры в принципе смогут решить многие из тех проблем, которые сдерживают дальнейшее развитие научнотехнического прогресса.
По современным представлениям нейрокомпьютер (НК) это система, предназначенная для организации нейровычислений путем воспроизведения информационных процессов, протекающих в нейронных сетях мозга. Структурной единицей НК служит специфический процессор нейропроцессор (НП), имитирующий информационное функционирование отдельных нервных клеток нейронов. Нейропроцессоры связываются друг с другом в нейроподобные структуры, имитирующие нейронн?/p>