Модернизация зеркальной антенны гигагерцевого диапазона

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

?ражения электромагнитной волны от металлической поверхности специального рефлектора (зеркала). Источником электромагнитной волны обычно служит какая-нибудь небольшая элементарная антенна, называемая в этом случае облучателем зеркала или просто облучателем. Зеркало и облучатель являются основными элементами зеркальной антенны.

Зеркало обычно изготовляется из алюминиевых сплавов. Иногда для уменьшения парусности зеркало делается не сплошным, а решетчатым. Поверхности зеркала придается форма, обеспечивающая формирование нужной диаграммы направленности. Наиболее распространенными являются зеркала в виде параболоида вращения, усеченного параболоида, параболического цилиндра или цилиндра специального профиля. Облучатель помещается в фокусе параболоида или вдоль фокальной линии цилиндрического зеркала. Соответственно для параболоида облучатель должен быть точечным, для цилиндра - линейным. Наряду с однозеркальными антеннами применяются и двухзеркальные.

Зеркальные параболические антенны применяются в различных диапазонах волн: от оптического до коротковолнового, особенно широко в сантиметровом и дециметровом диапазонах. Эти антенны отличаются конструктивной простотой, возможностью получения различных ДН, хорошими диапазонными свойствами и т.д. Существуют различные типы зеркальных антенн: параболические зеркала (параболоид, усечённый параболоид и параболический цилиндр), сферические зеркала, плоские и угловые зеркала, зеркальные антенны специальной формы, двух- и многозеркальные антенны, зеркально-рупорные антенны. Зеркальная параболическая антенна состоит из металлической поверхности, выполненной в виде параболоида вращения и небольшой слабонаправленной антенны - облучателя, установленной в фокусе параболоида и облучающей внутреннюю поверхность последнего. Параболическая поверхность образуется в результате вращения параболы с фокусом в точке F вокруг оси Z.

Целью работы является создание станции контроля космического пространства на радиополигоне "Орбита", включающей в себя системы приема радиосигналов космических источников (естественных и искусственных), потока радиоизлучения Солнца, а также оптические установки регистрации эмиссии ночного неба.

Актуальность модернизации радиотехнических и оптических средств радиополигона "Орбита", включающих в себя системы приема радиосигналов космических источников, потока радиоизлучения Солнца, а также оптические установки регистрации эмиссии ночного неба определяется необходимостью создания экспериментальной базы для контроля космического пространства и мониторинга параметров космической погоды. В дальнейшем станцию контроля космического пространства предполагается использовать для приема геофизической информации с борта национальных искусственных спутников Земли и для решения широкого круга прикладных и фундаментальных задач, стоящих перед Республикой Казахстан.

Научно-технический уровень (новизна): модернизация технических средств радиополигона "Орбита" позволит обеспечивать Центр диагоностики и прогноза геофизической обстановки данными для эффективного прогноза параметров космической погоды на основе наблюдения космического пространства приборами, расположенными на Земле и на борту космических аппаратов.

Связь данной работы с другими научно-исследовательскими работами. Наиболее полномасштабно работы по контролю космического пространства для целей мониторинга космической погоды развиваются в США. Основные работы проводятся, контролируются и финансируются Национальным аэрокосмическим агентством (НАСА). Европейское космическое агентство (ESA) не имеет своей службы контроля космического пространства. Оно использует поступающие сведения от других организаций, осуществляет информационное взаимодействие различных наблюдательных пунктов Европы. В России, в частности, в Научно-исследовательском радиофизическом институте (Нижний Новгород) проводятся наблюдения за Солнцем в широком частотном диапазоне. В Йоркском университете (Канада) ведутся интенсивные исследования эмиссии ночного неба.

 

 

1. Обоснование выбора направлений исследований

 

Космическая погода включает условия на Солнце, в солнечном ветре, магнитосфере, ионосфере и термосфере Земли, которые неблагоприятным образом влияют на космические и наземные технологические системы. Влияние процессов, происходящих на Солнце, на околоземное космическое пространство исследовалось в последние десятилетия, однако наше понимание физических процессов, управляющих этой сложной системой космической погоды, еще далеко недостаточно. В то же время происходит экспоненциальный рост количества космических систем и эти системы подвержены сбоям в работе или даже полному выходу из строя под воздействием неблагоприятной космической погоды. За время с момента запуска первого искусственного спутника Земли зафиксированы сотни сбоев в работе аппаратуры на борту спутников. Повышенная радиация опасна также и для космонавтов. Риск в работе космонавтов и сбоев в работе аппаратуры может быть уменьшен, если бы существовали надежные количественные краткосрочные и среднесрочные прогнозы космической погоды.

В настоящее время экспериментальные установки позволяют исследовать значительную часть составляющих космической погоды на основе регистрации потока космических лучей, напряженности геомагнитного поля, зондирования ионосферы с Земли. Одн