Микропроцессорная система экологического мониторинга вредных газовых выбросов

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

? характеристик ПП для удобства сравнения занесены в таблицы и указаны в приложении Б.

 

7.3 Разработка электрической принципиальной схемы измерительной части прибора

 

Электролитические сенсоры и на выходе выдают очень слабый аналоговый сигнал, порядка нескольких десятков наноампер, поэтому требуется усиление этого тока. Для этих целей подойдут дифференциальные усилители с большим коэффициентом усиления, но истинный коэффициент определяется схемотехническим видом ОУ и петлей ООС. К тому же их ток потребления чрезвычайно мал, а входы усилителя тока не потребляют. Схема включения датчиков с инвертирующим ОУ приведена на рисунке 7.3.[14].

 

Рисунок 7.3 - Схема усилителя для датчиков газа

 

Резисторы R5 и R4, устанавливаемые между неинвертирующим входом и землей, уменьшает ошибку, возникающую из-за тока смещения. Так как ОУ имеет емкостную нагрузку, то последняя вместе с выходным сопротивлением усилителя образует инерционное звено, которое дает дополнительный фазовый сдвиг выходного напряжения. Все это уменьшает запас по фазе, и схема усилителя может самовозбудиться уже при незначительной величине нагрузочной емкости.

Для устранения этого явления в цепь обратной связи включается дополнительный конденсатор С1, С2 и С3. В этом случае обратная связь представляет собой интегродифференцирующее фазо-опережающее звено, создающее в окрестности частоты среза положительный фазовый сдвиг, компенсирующий запаздывание, вносимое емкостью нагрузки.[15].

Основные критерии для параметрического поиска ОУ: предельно малые значения смещения нуля, входного тока и дрейфа нуля, низкое энергопотребление и низкий уровень шума.

Таким характеристикам удовлетворяют прецизионные и низковольтные ОУ, такие как AD707, MAX4289, КР140УД12, К140УД14А, 140УД24. Окончательно был выбран ОУ MAX4289, имеющий ультранизкий уровень напряжения с малым потребляемым током, что делает MAX4289 идеальным для применения в системах с автономным питанием, даже от одного щелочного элемента. Также ОУ имеет широкий диапазон входного синфазного сигнала, и размах выходного сигнала, который практически равен диапазону напряжения питания, что позволяет использовать почти всю энергию питания в выходном сигнале.

Отличительные особенности:

-Низкое рабочее напряжение: гарантировано от 1.0 В до 5.5 В;

-Диапазон входных сигналов: от 0 до (VCC - 0.2 В);

-Ультранизкое энергопотребление: 9 мкА (типичное);

-Оптимизирован для работы с источником питания из одного элемента;

-Совместимость с однополярными источниками питания 3.0 В и 5.0 В;

-Низкое напряжение смещения: 0.2 мВ;

-Низкий входной ток смещения: 5 нА;

-Высокий коэффициент усиления при разомкнутой петле обратной связи: 90 дБ;

-Выходной уровень сигнала питания и выходное сопротивление 5 кОм;

-Выпускается в миниатюрном корпусе 6-Pin SOT23 (3x3мм).

В схеме подключения ОУ с датчиками значения сопротивлений RG и RL подбираются для каждого сенсора индивидуально. Заявленная производителем величина RL нагрузки для любого датчика выбирается из диапазона 10-47 Ом. Для всех цепей примем его за 10 Ом, в целях удобства расчетов. В ОУ резисторы RG и RL образуют делитель, падении напряжения на резисторе RG равняется Uвых, а падение напряжения на RL равно Uвх. Тогда можно записать:

 

, (7.2)

 

или коэффициент усиления по напряжению:

 

, откуда (7.3)

. (7.4)

 

Uвх можно определить исходя из максимальной концентрации газа и чувствительности датчика:

Uвх=макс. концентр. газа (ppm) * чувствительность (нА/ppm).

Окончательно формула выглядит так:

 

. (7.5)

 

Пример для расчета датчика угарного газа CO-AE:

 

макс.концентр.газа (ppm)= 100.000, чувствительность (нА/ppm)= 20, тогда

 

25 кОм.

 

Аналогичные расчеты проведем и для других преобразователей, после чего занесем их в таблицы характеристик сенсоров, приведенные в приложении Б.

 

7.4 Моделирование в среде EWB

 

Проведем моделирование ОУ с датчиком в среде EWB. Так как нижний предел току в программе - 1 мкА, поэтому будем использовать его как заменитель нА. Для наглядности примем RG = 10 кОм, RL = 1 кОм, что соответствует усилению в 10 раз. Создадим разность потенциалов между вспомогательным и индикаторном электроде, подключив малый источник тока. То же самое сделаем между электродами сравнения и индикаторным, но в этом случае источник тока будит моделировать малый входной ток для датчика. Результаты моделирования представлены ниже на рисунках 7.4 и 7.5.

Моделирование показало, что ОУ с заданными параметрами успешно проходит тестирование: коэффициент усиления пропорционален делителю напряжения RG и RL, а значит и концентрации газа на выходе датчика пропорционально его количеству.

 

 

Рисунок 7.4 - Результат моделирования датчика №1

 

Рисунок 7.5 - Результат моделирования датчика №2

 

7.5 Модуль динамической индикации

 

Взаимодействие сложного прибора с пользователем осуществляется с помощью элементов управления и отображения информации.

Результат измерений должен быть представлен в удобной форме для человека. Такой системой счисления является десятичная. Для отображения единиц измерения ЖКИ должен обладать и алфавитной формой представления. Вывод служебной информации для пользователя требует дополнительных единиц знакомест. Минимальное количество отображаемых знакомест от 10 (концентрация газа плюс размерность величины). По?/p>