Методика изучения элементов математического моделирования в курсе математики 5-6 классов

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

о втором на 5 см. В каком аквариуме больше воды? (Cм.№ 547, [15]).

Понятия окружность и круг

При изучении окружности, круга и их свойств в учебнике используются задачи, в которых используются такие термины как окружность колеса, обороты колеса, арена цирка, циферблат часов, беговая дорожка, экватор Земли.

  • Великий древнегреческий математик Архимед (III в. до н.э.) установил, что длина окружности примерно в 3

    раза больше ее диаметра. Пользуясь этим результатом, реши задачу: Какова длина беговой дорожки ипподрома, имеющей форму круга радиусом км? (Cм.№ 307(1), [12]).

  • Длина экватора Земли равна примерно 40000 км, а ее диаметр составляет

    длины экватора. Чему равен диаметр Земли? (Cм.№488,[12]).

  • Сколько оборотов сделает колесо на участке пути в 1,2 км, если диаметр колеса равен 0,8 м? Число округли до целых (см.№ 549 (2), [15]).
  • Чему равна площадь циферблата часов, если длина минутной стрелки равна 4,5 см. Число округли до целых (см.№ 566 (а), [15]).
  • Арена цирка имеет длину 40,8 м. Найди диаметр и площадь арены. Число округли до целых (см.№ 737, [15]).
  • Также к этой группе относятся задачи:

5 класс, часть 1, [11]: №№ 102 (3), 142 (5), 280 (1), 716, 753, 791, 800;

5 класс, часть 2, [12]: №№ 269 (5), 271 (1), 307, 352 (3), 379 (1), 380 (2);

6 класс, часть 1, [13]: №№ 56 (а);

6 класс, часть 3, [15]: №№ 341, 342, 547, 549 (2,4), 562, 566.

Также при обучении действию замены исходных терминов выбранными математическими эквивалентами применяются задачи, в которых требуется замена одной единицы измерения другой более мелкой и наоборот. Таких задач в учебниках очень много, но в основном в них требуется переводить километры в метры, метры в сантиметры, минуты в часы (№№ (5 класс, часть 1, [11]) 146 (1,2,4), 162 (2), 340 (1), 392, 406, 408, 504, 561, 581, 679, 752. 764, 786, 797, 798; №№ 44, 56, 127 (3), 221, 228, 616 (2), 769 (2), 901, 992, 1065, 1067 (5 класс, часть 2, [12]); №№ 189 (2), 190 (2), 191 (2), 198, 199, 201, 209, 210, 212, 223, 233, 247, 305, 306, 334 (6 класс, часть1,[13]); №№ 44, 49, 125,203, 204, 292, 293 (1), 322, 372, 373, 551 (6класс, часть 2, [14]); №№ 116, 130 (а), 132,133, 154, 195, 223, 228, 304, 433-436, 444, 465, 466, 467, 499, 563, 633, 667, 678-680, 683, 700, 706, 717, 720, 727, 728, 738, 764, 767 (б) (6 класс, часть 3, [15])), что не вызывает больших сложностей у школьников. Например.

  • Чтобы связать шарф длиной 1,4 м, нужно 350 г шерсти. Сколько шерсти потребуется, чтобы связать шарф такой же ширины длиной 180 см? (Cм.№ 225 (1), [14]).
  • Подводная лодка, идя со скоростью 15,6 км/ч, пришла к месту назначения за 3 ч 45 мин. С какой скоростью она должна была идти, чтобы пройти весь путь на 45 мин быстрее (см.№ 227 (1), [14]).

Часто на практике используются такие единицы времени, как неделя, декада, квартал, век. В учебниках недостаточно задач, в которых название единиц измерения включено в сюжет задачи и требуется заменить одну единицу измерения другой в соответствии с условием. В таких задачах математическим эквивалентом будет являться число более мелких единиц измерения.

  • Средняя температура воздуха за неделю равна 18,6, а за шесть дней без воскресенья 18,4. Какой была температура воздуха в воскресенье? (Cм.№ 285 (2), [13]).

Мы считаем, что необходимо рассматривать больше задач, в которых требуется перевод единиц измерения, не водящих в известные системы мер, чем их приведено в учебниках [11 15].

При обучении действию оценки полноты исходной информации и введения при необходимости недостающих числовых данных необходимо учитывать компоненты, которые могут быть в условии этих задач: сюжет (объекты), величины, их характеризующие, значения этих величин. При этом можно выделить следующие типы задач, представленные в таблице [19].

сюжетвеличинызначенияа)++-б)+-+в)-++г)--+д)-+-е)+--

Знак + обозначает наличие соответствующего компонента в условии, знак - - отсутствие. Знак - в графе сюжет характеризует задачи, в которых требуется подобрать объекты по заданным величинам и (или) значениям. Знак - в графе величины предполагает выделение системы необходимых исходных величин в условиях лишних или недостающих данных. Комбинации +, +, + и -, -, - не рассматриваются как не представляющие интереса.

Кроме того, задачи внутри одного типа могут отличаться и формой задания: таблица, диаграмма, чертеж, краткая запись и т. д. Приведем примеры задач, встречающихся в анализируемых учебниках, соответствующие выделенным типам.

Первый тип соответствует комбинации +, + - и характеризуется наличием сюжета, величин и отсутствием значений величин. Сюда относятся такие задачи как:

  • По шоссе автомобиль двигался 2 часа со скоростью 90 км/ч, а по проселочной дороге 5 часов со скоростью v км/ч. Сколько всего километров проехал автомобиль по шоссе и по проселочной дороге? (Cм.№ 14 (1), [11]).
  • Зарплату рабочего, равную n руб., повысили сначала на 10%, а потом еще на 40% от новой суммы. Какой стала зарплата после второго повышения? (Cм.№ 58 (г), [15]).
  • Цену на компьютер снизили сначала на 20%, а потом еще на 50% от новой цены. После этого компьютер стал стоить k руб. Какой была его первоначальная цена? (Cм.№ 58 (д), [15]).

К типу I относятся также следующие задачи:

5 класс, часть 1, [11]: №№ 10, 14 (1), 16 (2-8), 28 (б), 40 (1-4), 72 (1-5), 82 (1), 83 (2), 142, 158 (1), 207, 210 (3), 250 (2), 317 (1), 317 (5), 398, 431, 433, 465, 466, 505, 506, 509, 531, 680;

5 класс, часть 2, [12]: №№ 478, 487, 495, 870, 884, 929, 1000, 1001, 1097, 1122, 1137, 1162;

6 класс, часть 1, [13]: №№ 66 (1,2), 107, 200, 222, 228, 443;

6 класс,часть2,[14]: №№ 47 (1,3,4), 53(1,3), 83, 130 (1,3), 136, 286, 287, 329, 337, 374, 453;

6 класс, часть 3, [15]: №№ 10, 16, 24, 148, 268, 319, 367 (б, в, г, д, е), 729.

Ко второму типу относятся задачи, в которых есть сюжет, числовые данные, но нет величин