Математические модели потребительского поведения и спроса

Курсовой проект - Экономика

Другие курсовые по предмету Экономика

Edp 1, что имеет место для товаров длительного пользования. Для предметов роскоши обычно Edp > 1, т.е. спрос является суперэластичным.

При постоянных ценах товары различаются по характеру изменения спроса в зависимости от величины дохода I. Товар j называется ценным (или товаром высшего ряда), если

 

,

 

т.е. спрос на него возрастает по мере перехода от менее доходных групп потребителей к более доходным. Для малоценного товара имеет место противоположное неравенство:

 

,

 

что означает вытеснение этого товара из потребительского набора группы потребителей по мере увеличения ее категории доходности.

На основе введенной выше классификации товаров по трем группам можно представить изменение спроса в зависимости от повышения дохода при помощи графика, представленного на рис. 5.16.

 

Рис. 5.16. Изменение спроса в зависимости от дохода

Здесь по горизонтальной оси (I) отложены относительные величины дохода, а по вертикали доли расходов по указанным трем группам товаров.

Нетрудно видеть, что доля спроса на товары первой необходимости падает с 70% (при малых доходах) до 35% (при доходе в 10 раз большем); сравнительно стабильна (в пределах от 20% до 27%) доля расходов на товары второй группы и значительно возрастает доля расходов на предметы роскоши (от 10% до 43%). Для изучения изменения спроса в зависимости от дохода различных потребительских групп применяются в основном модели двух типов:

1) Модели степенного вида (функции Энгеля):

 

.

 

Здесь показатель имеет смысл коэффициента эластичности: т.к. он показывает на сколько процентов увеличится спрос на товар, если доход увеличится на 1%. Коэффициент эластичности спроса от дохода находится как:

 

при

 

Для предметов первой необходимости показатель 1. Это означает, что при значительном увеличении дохода все большая часть его прироста тратится именно на товары этой группы.

2) Идея разделения потребляемых товаров и услуг на ряд различных групп развита далее при конструировании так называемых функций Торнквиста. Для товаров первой необходимости эта функция ищется в виде:

 

,

 

где a1, b1 параметры модели.

Заметим, что при очень большом доходе, условно представляемом как (I) величина спроса , что выражает факт асимптотического насыщения потребителя предметами первой необходимости.

Функция спроса Торнквиста для товаров длительного пользования отражает тот факт, что спрос на эти товары возникает лишь с некоторого (достаточно высокого) уровня дохода I2. Соответствующее выражение имеет вид:

 

, если I I2,

 

где a2, b2 параметры модели,

 

, если I < I2.

 

Как видно, спрос на товары этой группы также имеет асимптотическую тенденцию к насыщению, поскольку

 

Для предметов роскоши используется формула, в которой отсутствует тенденция к насыщению, а спрос начинается с еще более высокого уровня дохода I3:

 

, если I I3;

 

, если I < I3.

 

Легко видеть, что при достаточно больших значениях дохода I:

 

.

 

Это означает, что в этой ситуации практически весь прирост дохода тратится на предметы роскоши. Графическое изображение функций Энгеля и Торнквиста представлено на рис 5.17. и 5.18.

 

Pис. 5.17. Кривые Энгеля: рост спроса на различные группы товаров в зависимости от дохода

Рис. 5.18. Кривые Торнквиста

 

Графики функций Торнквиста для трех групп товаров.

 

6 Изменение цен и компенсация

 

Проблема компенсации путем увеличения дохода потребителя возникает во всех тех случаях, когда происходит повышение цен на один или несколько потребляемых товаров. При этом возможны различные подходы к решению этой проблемы. Наиболее прямой из них использует понятие функции спроса в достаточно общей форме и опирается на понятие компенсации как на такое увеличение дохода, которое позволяет оставить спрос на товар на том уровне, который определялся прежней ценой. Таким образом, применяется функция спроса

 

D = D(I, p),

 

где

I исходный уровень дохода,

p исходный уровень цены.

Обозначим новый уровень цены:

 

,

 

а компенсирующее изменение дохода

 

.

 

Легко видеть, что спрос остается неизменным, если выполняется условие

 

.

 

Для нормальных и ценных товаров и , поэтому при повышении цены (p>0), для сохранения уровня спроса необходимо увеличение дохода в размере

 

.

 

В конкретном случае, когда функция спроса имеет вид:

 

,

 

получаем следующее простое соотношение между повышением цены и компенсацией

или .

 

Это означает, что относительное увеличение дохода должно быть пропорционально относительному изменению цены с коэффициентом пропорциональности, равным отношению эластичностей этих факторов.

В более сложном случае многих товаров указанный подход