Математические модели в естествознании
Вопросы - Математика и статистика
Другие вопросы по предмету Математика и статистика
?ть гибели не учитывалась). Гораздо страшнее потеряться при передаче в следуюшему поколению.
Давление повторных мутаций
Мы проследили за судьбой единичной мутации и убедились, что вероятность потери мутировавшего аллеля с ростом номера поколения растет. Однако, в каждом новом поколении вновь возникают мутации. Темп мутирования при постоянных условиях для каждого локуса из поколения в поколение остается достаточно стабильным.
Пусть - темп мутирования, т.е. вероятность замены аллеля на в следующем поколении. Обозначим через и соответственно частоты аллелей и в -ом поколении. Тогда в следующем поколении частота аллеля увеличивается на за счет уменьшения частоты аллеля на :
, .
Из первого уравнения получаем . Поскольку , то . Вследствие малости величины имеем и . При частота , т.е. ростом номера поколения все аллели превращаются в . Этот процесс чрезвычайно медленный. Сделаем весьма естественное допущение, что . Тогда для снижения частоты аллеля с 1 до 0.99 (аллель -мутант встречается примерно у одной особи из ста) требуется 1000 поколений. Если бы мутации были единственным процессом, обуславливающим эволюционные изменения в популяции, то эволюция протекала бы невероятно медленно. Это основной урок, который следует извлечь из рассмотренного примера.
Мутации генов часто бывают обратимыми. Как только только аллель становится довольно частым в популяции, следует учитывать следует учитывать мутирование как к нему так и от него. Пусть -темп мутирования аллеля в . Темп обратного мутирования обозначим через . Уравнения эволюции имеют вид:
Состояние равновесия эволюционных уравнений:
, .
Оно устойчиво. Действительно
.
Осталось сослаться на приведенное выше утверждение об устойчивости неподвижных точек одномерных отображений. Впрочем, это слишком сложно. Поступим по другому. Введем новую переменную , или же . В результате подстановки получим:
.
Отсюда следует, что и при . Приближенно . Таким образом, скорость сходимости к состоянию равновесия весьма не велика.
Взаимодействие отбора и мутаций
В природе одбор и мутации протекают одновременно. Имеет смысл изучить их совместное действие. Рассмотрим однолокусную популяцию с аллелями и . Предположим, что мутации происходят в гаметах (в половых клетках родительских организмов). Темп мутирования за одно поколение аллеля в аллель обозначим через . Считаем, что . Пусть и -частоты аллелей и в -ом поколении в момент появления его на свет. Относительные приспособленности генотипов , и обоэначим как , и соответственно. В соответствии с (16) и (17) (уравнение для отбора в менделевской популяции) эволюция для частоты аллеля задается одномерным отображением:
, (24)
где
.
В правой части (24) слагаемое - уменьшение частоты аллеля за счет мутирования в аллель . Очевидно, для частоты аллеля имеем .
Выше было показано, что для всех . Поскольку параметр , правая часть отображения (24) является также монотонно растущей функцией для . На основе этого факта выше было доказано, что все траектории одномерного отображения стремятся к состояниям равновесия.
Рассмотрим некоторые частные случаи. Пусть отбор действует против особей рецессивного гомозиготного генотипа . Будем считать, что относительные приспособленности генотипов и равны между собой и выше относительной приспособленности генотипа . Положим: и . Отображение (24) приобретает вид:
. (25)
Его неподвижные точки суть и . Второе состояние равновесия существует только в случае . Для малой окрестности нуля имеем:
Поскольку на интервале нет состояний равновесия, то для всех . В результате, траектории с начальным условием стремятся к состоянию равновесия , т.е. при . Далее, . Следовательно, для всех . Траектории с начальным условием также стремятся к этому состоянию равновесия, которое оказывается глобально устойчивым. Напомним, что устойчивое состояние равновесия, для которого частоты обоих аллелей ненулевые, называется балансированным полиморфизмом. Выше было показано, что для случая, когда отбор действует против рецессивных гамет и отсутствуют мутации, полиморфизм невозможен (рецессивный аллель вытесняется из популяции). Если рецессивный аллели летальны , то значения равновесных частот суть и . При достаточно типичном темпе мутирования получаем равновесную частоту рецессивного летального аллеля . Это достаточно высокая вероятность возникновения генетического заболевания ( в среднем три особи на тысячу).
Если (отбор против рецессивных гомозигот менее интенсивен нежели мутации), то состояние равновесия отсутствует и отображение (25) имеет единственную неподвижную точку , к которой, естественно, сходятся все траектории. Таким образом, несмотря на лучшую приспособленность обладателей аллеля , засчет мутаций происходит вытеснение этого аллеля.
Рассмотрим теперь случай, когда гомозиготный геннотип имеет самую высокую относительную приспособленность. Пусть , , где . Преобразуем правую часть уравнение эволюции (24). Последовательно получаем :
Далее,
Тем самым, отображение (24) приобретает вид:
.
Одна из неподвижных точек отображения, очевидно, . Две другие определяются из уравнения:
.
Получаем:
, .
Оба корня существуют поскольку .Здесь . Поскольку для , то знак разности определяется знаком ква?/p>