Аксиомы планиметрии

Доклад - Математика и статистика

Другие доклады по предмету Математика и статистика

одной прямой, не пересекающей данную". Эта геометрия была столь же непротиворечивой, как и геометрия Евклида. Модель планиметрии Лобачевского на евклидовой плоскости была построена французским математиком Анри Пуанкаре в 1882 г. На евклидовой плоскости проведём горизонтальную прямую. Эта прямая называется абсолютом (x). Точки евклидовой плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре - это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD). Фигура на плоскости Лобачевского - фигура открытой полуплоскости, лежащей выше абсолюта (F). Неевклидово движение является композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского. Все аксиомы планиметрии Лобачевского непротиворечивы. Определение прямой следующее: "Неевклидова прямая - это полуокружность с концами на абсолюте или луч с началом на абсолюте и перпендикулярный абсолюту". Таким образом, утверждение аксиомы параллельности Лобачевского выполняется не только для некоторой прямой и точки A, не лежащей на этой прямой, но и для любой прямой и любой не лежащей на ней точки A. За геометрией Лобачевского возникли и другие непротиворечивые геометрии: от евклидовой отделилась проективная геометрия, сложилась многомерная евклидова геометрия, возникла риманова геометрия (общая теория пространств с произвольным законом измерения длин) и др. Из науки о фигурах в одном трёхмерном евклидовом пространстве геометрия за 40 - 50 лет превратилась в совокупность разнообразных теорий, лишь в чём-то сходных со своей прародительницей - геометрией Евклида.

 

Аксиомы планиметрии

 

Аксиомы принадлежности

Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.

Через любые две точки можно провести прямую, и только одну.

Аксиомы расположения

Из трех точек на прямой одна и только одна лежит между двумя другими.

Прямая разбивает плоскость на две полуплоскости.

Аксиомы измерения

Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумму длин частей, на которые он разбивается любой его точкой.

Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180 градусов. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.

Аксиомы откладывания

На любой полупрямой от ее начальной точки можно отложить отрезок, заданной длины, и только один.

От любой полупрямой в заданную полуплоскость можно отложить угол заданной градусной мерой, меньшей 180 градусов, и только один.

Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.

 

Аксиома параллельности

Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

 

Евклид

 

Биография

Евклид (иначе Эвклид) - древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения о Евклиде крайне скудны. Известно лишь, что учителями Евклида в Афинах были ученики Платона, а в правление Птолемея I (306-283 до н.э.) он преподавал в Александрийской академии.

Евклид - первый математик александрийской школы. Евклид - автор ряда работ по астрономии, оптике, музыке и др. Арабские авторы приписывают Евклиду и различные трактаты по механике, в том числе сочинения о весах и об определении удельного веса. Умер Евклид между 275 и 270 до н. э.

Начала Евклида

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино. Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., требуется, чтобы через любые две точки можно было провести прямую), а аксиомы - общие правила вывода при оперировании с величинами (напр., если две величины равны третьей, они равны между собой). В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой геометрической алгебре. В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных