Курс лекций по статистике

Информация - Экономика

Другие материалы по предмету Экономика

располагать данными за несколько периодов.

В статистике различают два вида расчета относительных величин динамики:

  • цепные расчеты, когда относительные величины динамики определяют с переменной базой сравнения. Показывают, как быстро изменяются величина показателя за год или иную единицу времени.
  • базисные расчеты, когда относительные величины динамики рассчитывают с постоянной базой сравнения. Характеризуют изменение показателя за ряд последовательно возрастающих периодов.

Часто, при исчислении относительных величин динамики возникает вопрос о выборе базы сравнения. Обычно, при характеристике динамики за большие промежутки времени в качестве базы принимают период, имеющий большое значение в экономике. Так же часто используют в качестве базы первый член ряда динамики.

  1. Относительные величины сравнения представляют собой отношение одноименных величин, относящихся к разным объектам (численность населения в г. Твери и в г. Торжке). Особенно широко применяют его в международных сопоставлениях, причем для исчисления применяют как абсолютные значения, так и относительные.
  2. Относительные величины интенсивности показатели, характеризующие распространение, развитие какого-либо явления в определенной среде. Они измеряют степень или интенсивность распространения показателей или явлений. Чаще всего они представляют собой соотношение разноименных, но связанных явлений, где в числители величина явления, а в знаменатели объем, той среды, в которой происходит развитие того явления. Чаще всего их рассчитывают на 100 или 1000 единиц.

Средние величины

Сущность статистических средних

Целый ряд признаков, присущих отдельным объектам в статистике различаются по величине. Однако, при всем разнообразии размеров признака у отдельных объектов, существуют характерные для данных условий размеры этих признаков. Размеры признака, характерные для всей массы единиц, статистика выражает, при помощи средней величины. Средние в статистике это обобщающий показатель, выражающий типичные размеры варьирующих признаков в конкретных условиях места и времени. Отличительной особенностью средних является то, что в них погашаются индивидуальные различия признака у отдельных единиц совокупности и в результате чего, появляется возможность охарактеризовать общие черты и свойства массовых экономических явлений.

Необходимость характеристики средней величины требует предварительной работы, в частности требует расчленения изучаемой массы объектов на качественно однородные группы. Иначе говоря, метод средних базируется на методе группировки.

Способы расчета статистических средних

Средние величины могут рассчитываться различными способами. В одних случаях достаточно иметь итоговые данные, которые делятся на число единиц, в других случаях необходимо выполнить дополнительные расчетные работы, что зависит от целей, которые поставлены.

В статистике в зависимости от исходных данных, от задач, поставленных перед исследователями, применяют тот или иной способ расчета. Итак, способы расчета средних представляются выражениями:

  1. - средняя агрегатная

  2. Средняя агрегатная употребляется чаще всего в экономических расчетах, потому что, обычно в отчетности, содержаться итоговые данные по ряду признаков, а соотношение их дает нам искомый результат.

  3. - средняя арифметическая

  4. Средняя арифметическая используется в тех случаях, когда имеются данные о распределении численности единиц какой-либо совокупности по величине усредняемого признака.

  5. - средняя гармоническая

  6. Средняя гармоническая определяется, если известны отдельные значения усредняемого признака и соответствующие им значения другого признака.

Простая и взвешенная средняя

Из приведенных выше формул, средней арифметической и средней гармонической следует, что величина средней зависит не только от размера усредняемого признака x, но и в большей мере от значений f и W. При этом, очевидно, что, при вполне определенных конкретных значениях x(x1, x2,…,xn) величина средней будет тем больше, чем больше удельный вес в сумме значений имеют численности тех вариантов, которые обладают наибольшими размерами.

На величину средней не будут оказывать влияния значения f и W в том случае, если они будут одинаковыми для всех вариантов усредненного признака x: f1=f2=…=fn и W1=W2=…=Wn.

Если такое условие имеется, то для исчисления средней арифметической применяют формулу:

  1. , где n число вариантов усредняемого признака x.

  2. Для средней гармонической:

Средние, рассчитанные по формулам №1, 2, 3, т.е. содержащие f и W, называются взвешенными, а значения f и W называются весами средней, а процесс расчета, в свою очередь, называется взвешиванием. Если же расчет производится по формулам №4, 5, средние, определенные таким образом называются простыми или невзвешенными.

При расчете средних чаще всего применяют формулы средних взвешенных. Формулы № 4, 5 употребляются в тех случаях, когда варианты усредняемого признака не повторяются или не произведена их группировка. Такое разграничение на простые средние и взвешенные очень важно в экономике, потом что применение только простых вместо средне взвешенных может привести к ошибочным результатам и выводам.

Мода и медиана в статистике