Конструирование двухступенчатого цилиндрического редуктора
Дипломная работа - Разное
Другие дипломы по предмету Разное
nbsp;
С целью получения оптимальных размеров передачи целесообразно прежде всего, определить межосевое расстояние awТ и модуль mТ.
3.4.1 Определение межосевого расстояния
Значение межосевого расстояния:
(3.4.1.1)
где Ka = 495 - для прямозубых колес; ?ba = 0,25 - коэффициент ширины шестерни относительно межосевого расстояния /1/; [?H]Т = 1058 МПа; KHB, коэффициент, учитывающий распределение нагрузки по ширине венца.
Коэффициент ширины венца относительно межосевого расстояния:
(3.4.1.2)
Коэффициент ширины венца относительно начального диаметра шестерни:
(3.4.1.3)
KH? - коэффициент, учитывающий неравномерность распределения нагрузки по ширине зубчатых колес. Примем /2, стр 20:
По формуле (3.4.1) определим межосевое расстояние:
(3.4.1.4)
Вычисленное значение межосевого расстояния округляют до ряда размеров Ra40 по ГОСТ6636-69. Исходя из этого принимаем aWT = 160 мм.
3.4.2 Назначение модуля передачи
Максимально допустимый модуль mmaxT, мм определяют из условия неподрезания зубьев у основания:
(3.4.2.1)
Минимально допустимый модуль mminT, мм определяют из условия прочности:
(3.4.2.2)
где Km = 5,610 3 для прямозубых передач; [?F]Т = 342,86 МПа; T2Т = 757,58 H м.;
bW - рабочая ширина зубчатого колеса, которую рассчитывают по формуле:
(3.4.2.3)
Минимально допустимый модуль определим по формуле (3.10):
(3.4.2.4)
Из полученного диапазона (mmin mmax) модулей принимают стандартное значение m. Принимаем m = 4 мм /1/.
3.4.3 Определение числа зубьев шестерни и колеса
Суммарное число зубьев:
(3.4.3.1)
Число зубьев шестерни:
. (3.4.3.2)
Округляем значение в ближайшую сторону до целого и принимаем z1T=20.
Число зубьев колеса:
. (3.4.3.3)
3.4.4 Уточнение передаточного числа
Фактическое передаточное число:
. (3.4.4.1)
Отклонение фактического передаточного числа от номинального не должно превышать 3%, т.е.:
. (3.4.4.2)
3.4.5 Определение основных геометрических размеров шестерни и колеса
Межосевое расстояние:
. (3.4.5.1)
Делительные и начальные диаметры рассчитываются по формуле:
Для шестерни:
(3.4.5.2)
Для колеса:
(3.4.5.3)
Диаметр окружности вершин зубьев:
(3.4.5.4)
(3.4.5.5)
Диаметр окружности впадин зубьев:
(3.4.5.6)
(3.4.5.7)
Определение ширины зубчатого венца колеса:
(3.4.5.8)
Принимаем /2/.
Определение ширины зубчатого венца шестерни:
(3.4.5.9)
Принимаем /2/.
Коэффициент торцевого перекрытия:
(3.4.5.10)
Окружная скорость вращения тихоходной передачи:
. (3.4.5.11)
В зависимости от окружной скорости назначаем степень точности 9 /2/.
.4.6 Определение сил в зацеплении
Окружная сила:
. (3.4.6.1)
Радиальная сила:
. (3.4.6.2)
3.5 Проверка зубьев тихоходной передачи на выносливость по контактным напряжениям
Расчетное значение контактного напряжения:
(3.5.1)
где: - коэффициент, учитывающий механические свойства сопряженных зубчатых колес; для стальных колес .
- коэффициент, учитывающий форму сопряженных поверхностей зубьев;
при
- коэффициент, учитывающий суммарную длину контактных линий;
для прямозубых передач:
- коэффициент, учитывающий распределение нагрузки между зубьями;
=1,0 - для прямозубых передач.
- коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий; ;
- коэффициент, учитывающий внутреннюю динамику нагружения; =1,03 /2/.
Полученные параметры подставляем в формулу (3.5.1):
(3.5.2)
3.6 Проверка зубьев колес тихоходной передачи по напряжениям изгиба
Расчетное напряжение изгиба в зубьях шестерни:
.(3.6.2)
Расчетное напряжение изгиба в зубьях колеса:
.(3.6.2)
где: =1 - коэффициент, учитывающий распределение нагрузки между зубьями;
- для прямозубых передач /2/.
- коэффициент, учитывающий внутреннюю динамическую нагрузку;
KFV=1,03 - степень точности 8/2/.
-коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий:
/2/; (3.6.3)
YF1T = 4,08 при Z1T=20; X1T=0;
YF2T=3,62 при Z2T=60; X2T=0.
Подставляя полученные параметры в формулу (3.6.1)и (3.6.2), получим:
Для шестерни:
Для колеса:
Учитывая выше вычисленные напряжения, сравним:
На основании этого можно сделать вывод о том, что тихоходная передача удовлетворяет условиям прочности.
3.7 Проектировочный расчет быстроходной передачи
Методика расчета аналогична ранее рассмотренному проектировочному расчету тихоходной передачи. Все наименования и формулы определения параметров указаны в п.3.4.
3.7.1 Определение межосевого расстояния
Для двухступенчатого соосного редуктора awБ = awТ = 160 мм.
Коэффициент ширины зубчатых колес ?ba определяют по формуле :
(3.7.1.2)
где KH? = 1,2; Ka = 495; uБ = 4,64; T2Т = 265,62 Нм; [?H]Б = 1058 МПа.
Коэффициент ширины венца относительно начального диаметра шестерни:
(3.7.1.3)
Рабо?/p>