Классы конечных групп F, замкнутые относительно произведения F-подгрупп, индексы которых не делятся на некоторое простое число
Курсовой проект - Математика и статистика
Другие курсовые по предмету Математика и статистика
ткова. Итак, для любого из . Отсюда, в частности, следует, что . Учитывая данные факты, нетрудно показать, что равенство (5.1) принимает следующий вид:
Используя лемму 5.1.2, равенство (5.2) приводится к виду:
где --- некоторое множество простых чисел, содержащее число .
Покажем, что из 2) следует 1).
Действительно, что --- произвольная минимальная не -группа. Согласно условию, разрешима. Пусть . Согласно теореме 2.2.5, , где --- единственная минимальная нормальная подгруппа, --- -группа и , где --- максимальный внутренний локальный экран формации . Если , то из того факта, что , следует, что . Получили противоречие. Тогда . Согласно лемме 2.2.20, насыщенная формация имеет полный локальный экран такой, что . Очевидно, что . Так как , то очевидно, что . Итак, любая минимальная не -группа с либо группа простого порядка, либо группа Шмидта с ненормальной -силовской подгруппой. Согласно лемме 2.2.21, это же верно, когда . Итак, --- -формация Шеметкова. Теорема доказана.
2.3 Лемма [14-A, 21-A]. Пусть --- наследственная насыщенная -формация Шеметкова. Формация содержит любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на , только в том случае, когда --- формация -замкнутых групп.
Доказательство. Пусть --- -формация Шеметкова. Согласно теореме 5.2.2, она имеет следующее строение:
где . Если , то --- формация -замкнутых групп. Так как индексы , не делятся на , то и содержат силовскую -подгруппу группы . По условию, и -замкнуты. Отсюда следует, что -замкнута. Пусть множество содержит простое число . Покажем, что в этом случае утверждение леммы неверно. Пусть --- группа порядка . Пусть --- простое число, отличное от и . Так как , то существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Так как и имеет единственную минимальную нормальную подгруппу, то согласно лемме 2.2.18, существует точный неприводимый -модуль , где --- поле из элементов. Пусть . Так как , то, как и выше, существует точный неприводимый -модуль , где --- поле из элементов. Пусть .
Рассмотрим следующие две подгруппы: и . Ясно, что . Подгруппы и -замкнуты, причем индексы , не делятся на . Если бы группа была бы -замкнута, то тогда была бы нормальной подгруппой в группе , что невозможно. Итак, утверждение леммы верно только тогда, когда . Лемма доказана.
2.4 Лемма [14-A, 21-A]. Пусть --- -разрешимая группа, , где , , индексы , не делятся на . Тогда .
Доказательство. Доказательство проведем индукцией по порядку . Пусть --- минимальная нормальная подгруппа . Так как --- -разрешимая группа, то либо -группа, либо -группа. Если --- -группа, то . Согласно индукции, . Получили противоречие.
Пусть --- -группа. Так как , не делятся на , то . Так как --- единственная минимальная нормальная подгруппа группы и , то . Рассмотрим подгруппу . Так как , --- -группа, , то нетрудно показать, что --- -группа. Так как , то --- -замкнутая группа. Аналогичным образом можно доказать, что --- -замкнутая группа. Отсюда следует, что --- -замкнутая группа. А это значит, что . Получим противоречие. Лемма доказана.
3. Критерий принадлежности групп, факторизуемых подгруппами, индексы которых не делятся на некоторое простое число, наследственно насыщенным формациям
В данном разделе в классе разрешимых групп получено описание наследственных формаций Фиттинга , содержащих любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число .
3.1 Лемма [14-A, 21-A]. Пусть --- наследственная насыщенная формация, содержащая любую разрешимую группу , где и --- -подгруппы и индексы , не делятся на некоторое фиксированное простое число . Тогда любая разрешимая минимальная не -группа принадлежит одному из следующих типов:
1) --- группа простого порядка , где ;
2) --- группа Шмидта;
3) , где , где --- максимальный внутренний локальный экран формации , --- простое число отличное от ;
4) , , , где --- -замкнутая группа, , где --- максимальный внутренний локальный экран формации , --- простое число отличное от .
Доказательство. Пусть --- произвольная разрешимая минимальная не -группа. Если , то нетрудно показать, что --- группа простого порядка , причем .
Пусть . Покажем, что --- бипримарная -подгруппа. Действительно, если --- примарная группа, то из насыщенности формации следует, что . Противоречие. Пусть . Так как --- разрешимая группа, то нетрудно показать, что , где , индексы , не делятся на . Согласно условию, . Получили противоречие. Итак, .
Пусть --- минимальная нормальная подгруппа . Если --- -группа, то . Рассмотрим случай, когда . Покажем, что в этом случае --- группа Шмидта. Вначале докажем, что --- циклическая группа. Действительно, в противном случае , где и --- максимальные подгруппы . Тогда . Так как , не делятся на , , то . Противоречие. Итак, --- циклическая группа, . Пусть . Покажем, что . Предположим противное. Пусть , где . Пусть и --- циклические группы соответственно порядков и . Обозначим через регулярное сплетение . И пусть --- база сплетения, т. е. . Так как некоторая подгруппа группы изоморфна , то . Очевидно, что подгруппы , принадлежат формации .
Пусть , где . Обозначим через базу сплетения . Тогда
Легко видеть, что .
Так как индексы и не делятся на , то . Но , и поэтому
Полученное противоречие показывает, что . Итак, доказали, что --- группа Шмидта. Согласно лемме 2.2.21, --- группа Шмидта. Следовательно, --- группа типа 2).
Пусть --- -группа и . Пусть . Тогда, согласно теореме 2.2.5, , где , , --- максимальный внутренний лок?/p>