Катодолюминесценция твердых растворов на основе (SiC)1-x(AlN)x

Дипломная работа - Физика

Другие дипломы по предмету Физика

Введение

 

Успешное развитие твёрдотельной электроники определяется уровнем создания новых материалов, удовлетворяющих комплексу требований. Анализ современной зарубежной и отечественной патентной и периодической литературы показывает, что наиболее полно удовлетворяют требованиям твердотельной электроники такие классы тугоплавких соединений как бориды, карбиды, нитриды и силициды. Это объясняется, прежде всего, тем, что указанные соединения помимо необходимого комплекса свойств обладают повышенной устойчивостью к воздействию градиента температур, электрического потенциала, механических напряжений, агрессивных сред.

Определённую перспективу в этом плане имеют твёрдые растворы на основе карбида кремния. Это связано с тем, что твёрдые растворы на основе карбида кремния наследуют его уникальные свойства, в том числе и обусловленные существованием более 140 политипов. Специфика термомеханических, электрофизических, физико-химических свойств карбида кремния предопределила разнообразие областей применения материалов на основе этого соединения. Материалы на основе карбида кремния очень широко применяются в современной технике в качестве огнеупоров, активных элементов электронных и электротехнических устройств, конструкционных элементов химической и энергетической аппаратуры.

Особый интерес представляет система SiC-AlN который связан с тем, что в этой системе образуются непрерывный ряд варизонных твёрдых растворов во всём диапазоне изменения составов. Кроме того, создание непрерывных твёрдых растворов карбида кремния с нитридами алюминия и галлия представляет большой интерес в связи с возможностями получения прямозонного материала для полупроводниковых инжекционных лазеров.

В настоящее время следует с полным основанием считать: что механические, химические, физико-химические и другие свойства кристаллических тел определяются реальной структурой, которая в отличие от идеальной структуры характеризуется различного рода дефектами строения. Для изучения подобных структур необходим спектр исследований по определению различных свойств полупроводников. Общеизвестно, что оптические исследования являются важным инструментом для исследования структуры и совершенства кристаллов. В том числе изучение катодолюминесценции кристаллов позволяет оценить многие параметры материалов. В связи с этим перед нами была поставлена задача исследовать катодолюминесценцию твердых растворов и влияние технологических параметров процесса выращивания на оптические свойства твердых растворов (SiC)1-x (AlN)x.

ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР

 

.1 Кристаллическая структура и полупроводниковые свойства карбида кремния и нитрида алюминия

кремний нитрид раствор полупроводниковый

SiC - единственное полупроводниковое соединение элементов четвертой группы периодической системы Д.И. Менделеева - кремния и углерода и имеющее строго стеохиметрический состав: 50% (ат) Si и 50% (ат) C.

Карбид кремния кристаллизуется в двух основных модификациях: кубической со структурой сфалерита(a-SiC) и гексагональной плотноупакованной (b-SiC).

Одной из интереснейших особенностей карбида кремния является то, что модификация a-SiC образует большое количество политипов, стабильных в широком интервале температур. Существуют различные системы условных обозначений применяемых при описании политипных структур. Наиболее наглядную и удобную систему символов разработал Рамсделл. Обозначения Рамсделла описывают политипы SiC числом слоев, содержащихся в элементарной ячейке. Буквы Y,R,C используются для указания типов решетки (гексагональной, ромбоэдрической, кубической соответственно). Перед буквой ставится число, равное числу двойных слоев атомов в элементарной ячейке. Так, символ nH обозначает гексагональную структуру с n -слойным периодом повторяемости вдоль оси С, а символ mP характеризует ромбоэдрическую структуру с m-слойным периодом повторяемости вдоль оси С.

Все политипные структуры SiC (а их более 150) построены по законам плотной шаровой упаковки и отличаются между собой порядком чередования двойных гексагональных слоев углерода и кремния. Каждый атом углерода находится в центре тетраэдра, образованного из атомов кремния и наоборот, т.е. координационное число для всех политипов SiC равно четырем. Тройные оси этих тетраэдров параллельны между собой, а основания тетраэдров в соседних слоях могут быть параллельны или антипараллельны. Все без исключения политипы SiC могут быть описаны в гексагональных осях таким образом, что шестерная ось С будет перпендикулярна плоскости гексагональных слоев. Число двойных слоев необходимых для завершения элементарной ячейки, определяет ее параметр, который кратен величине, равной 2,51364 Ао и является расстоянием между соседними слоями упаковки.

Различие в энергетических характеристиках разных политипов невелико, что позволяет отнести политипные переходы к превращениям второго рода, при которых изменения в решетке происходит во второй и более далеких координационных сферах.

В системе AIIIN достаточно хорошо известно соединение AlN [1]. До недавнего времени считали, что нитрид алюминия может иметь лишь одну кристаллическую модификацию типа вюрцита, так как воздействием высоких статических и динамических давлений изменить его кристаллическую структуру не удалось. Однако при спекании порошков плазмохимического нитрида алюминия в условиях, обеспечивающих диффузию кислорода в решетку, образу