Інтегральні перетворення Лапласа
Информация - Математика и статистика
Другие материалы по предмету Математика и статистика
Вступ
В багатьох задачах математичного аналізу розглядаються випадки, в яких кожна точка одного простору ставиться у відповідність деякій точці іншого (або того ж самого) простору. Відповідність між двома точками встановлюється за допомогою перетворення або оператора. В задачу теорії операторів входить докладний опис і класифікація різноманітних видів перетворень і їх властивостей, а також розробка символічних методів, що дозволяють мінімалізувати і спростити обчислення. Застосування операційного метода можна порівняти з логарифмуванням, коли 1) від чисел переходять до логарифмів, 2) над логарифмами проводять дії, що відповідають діям над числами, при тому множенню чисел відповідає більш проста операція складання логарифмів і т.д. 3) від найденого логарифма знов повертаються до числа. В операційному методі широко використовується перетворення Лапласа, яке перетворює певний клас функцій-оригіналів f(t) дійсної змінної t в функцію-зображення F(p) комплексної змінної p.
1. Означення перетворення Лапласа. Оригінал і зображення.
Нехай f [ t] -інтегрована на (0,Т) при довільному Т>0 функція, що дорівнює нулю при t>0 : f[t]=0 при t0 задовольняє оцінці:
(1.1)
то можна розглянути інтеграл
(1.2)
Дійсно справджується оцінка
(1.3)
При виведенні (1.3) була застосована оцінка (1.1). З оцінки (1.3), зокрема, випливає, що . Функція є аналітичною функцією комплексної змінної в півплощині . Для того щоб це перевірити, знаходимо поки формально:
(1.4)
Як і при виведенні (1.3), знаходимо
(1.5)
Останнє означає що інтеграл рівномірно по Rep>a збігається і випливає що похідна існує при , і формула (1.4) справедлива при .
Інтеграл (1.2) називається перетворенням Лапласа функції і позначається -. В цьому випадку функція називається оригіналом, а функція зображенням.
Перетворення Лапласа можна звязати з перетворенням Фурє. Дійсно з (1.2) маємо:
Де (Перетворення Фурє із знаком -)
2. Властивості перетворення Лапласа L
Лінійність.
Доведення:
В силу властивостей інтеграла:
Диференціювання зображення
Для m=1 властивість вже встановлено. Для довільного m властивість доводиться аналогічно.
Перетворення Лапласа похідних.
Для m=1 за допомогою інтегрування частинами знаходимо
При цьому ми врахували, що виконуються наступні оцінки:
При и . Для довільного m властивість 2.3 встановлюється за індукцією
Зсув перетворення Лапласа.
Доведення властивості 2.4 очевидно.
Перетворення Лапласа і його подібності.
Зсув оригінала в перетворенні Лапласа.
Доведення. Позначимо
Очевидно, що g[t]=f[t], g[+0]=0
Тому за допомогою інтегрування частинами знаходимо
При цьому ми врахували що g[+0]=0 в силу умови (1.1)
при , , .
при , , .
Звідси знаходимо
Перетворення Лапласа дробу f[t]/t.
Доведення. Позначив Ф[p]=[f[t]\t][p] . Знайдемо
Останню рівність про інтегруємо по довільному шляху від р до довільної точки z=Rez=?
Враховуючи, що в силу (1.3) Ф[?]=0. І отримаємо потрібну властивість (2.8).
Перетворення Лапласа згортки f*g.
Доведення. Позначимо
Очевидно, що при t>?
При довільному ?>0. Для доведення останньої нерівності ми використовуємо також оцінку.
Звідси при
Таким чином, при Rep>a
Тут ми скористалися теоремою Фуббіні і змінили порядок інтегрування.
3. Обчислення перетворення Лапласа основних функцій
1. f[t]=e. Rep>Re?, ?
2. f[t]=Sin[?t], ?R
За формулами Ейлера маємо
Sin[?t]=
Тому за допомогою 1 маємо:
3. f[t]=cos[?t], ? L[cos[?t]][p]=
Доведення аналогічне.
4. f[t]=Sh[?t], ?R
За означенням гіперболічних функцій Sh[?t]= /2
5.
Доведення аналогічне.
6.
За властивістю 2.2 маємо:
Зокрема
7.
Як і у прикладі 6, знаходимо для функції
Застосуємо далі для лівої і правої частини отриманої рівності операції дійсної уявної частини, вважаючи р дійсним і додатнім.
(3.1)
(3.2)
4. Обернене перетворення Лапласа
Теорема 4.1 (основна) Нехай функція f(t) задовольняє умові (1.1) і F(p) її зображення. Тоді в довільній точці t>0 в якої функція f(t) диференційована, справджується формула подання:
(4.1)
Доведення
Розглянемо функцію . Очевидно, що функція g[t] інтегрована на (0,?) і диференційована в т. t>0. Розглядаючи F[p] перетворення Фурє функції g[t] обернення перетворення Фурє.
Після множення останньої рівності на отримаємо 4.1. 4.1 називається формулою оберненого перетворення Лапласа або формулою Мелліна. Теорему доведено. ¦
Теорема має недолік, для її застосування необхідно попередньо володіти інформацією про властивост