Автоматизированный электропривод главного движения универсального фрезерного станка модели 6Н81

Дипломная работа - Физика

Другие дипломы по предмету Физика

ширина 250

наибольший угол поворота стола, град 45

электродвигатель шпинделя:

число оборотов, об/мин 1450

мощность, кВт 4,0

электродвигатель подачи:

число оборотов, об/мин 1420

мощность, кВт 1,5

максимальный диаметр инструмента, мм 200;

быстрый ход стола, мм/мин 8 000;

 

1.2 Анализ взаимодействия оператор-промышленная установка

 

Взаимодействие оператора со станком 6Н81 осуществляется путем управления оператором работой станка. Возможны два режима работы станка: ручной и полуавтоматический.

Ручной режим работы является наладочным и осуществляется от рукояток и маховичков ручного привода. Оператор, в данном режиме, имеет возможность осуществлять управление перемещением стола вперед - назад, скорость при этом значительно ниже, чем при номинальном режиме работы. В этом режиме также осуществляется переключение зубчатых колес в коробке скоростей и подач.

Управление станком в полуавтоматическом режиме осуществляется от панели управления, которая расположена на передней части консоли. С помощью панели управления можно производить следующие действия: включение и отключение привода подач, включение и отключение привода главного движения

Контроль перемещения по всем координатам осуществляется при помощи линейных шкал, установленных вдоль направляющих.

 

1.3 Анализ кинематической схемы, определение параметров и проектирование расчетной схемы механической части электропривода

 

Кинематическая схема механизма продольной подачи стола станка представлена на рис. 1.2.

 

Рис. 1.2

 

На рис. 1.2. приняты следующие условные обозначения:

М - двигатель,

СМ - соединительная муфта,

КС - коробка скоростей (,),

Ш - шпиндель.

Механическая часть электропривода (ЭП) состоит из движущейся части электродвигателя, коробки скоростей, шпинделя с инструментом. Приведенная схема наглядно отражает то положение, что механическая часть электропривода представляет собой систему связанных масс, движущихся с различными скоростями вращательно. При нагружении элементы системы деформируются, так как механические связи не являются абсолютно жесткими. При изменениях нагрузки массы имеют возможность взаимного перемещения, которое при данном приращении нагрузки определяется жесткостью связи.

Для анализа движения механической части ЭП осуществляется переход от реальной кинематической схемы к расчетной, с которой массы и моменты инерции движущихся элементов и их жесткости, а так же силы и моменты, действующие на эти элементы, заменены эквивалентными величинами, приведенными к одной и той же скорости.

Для наиболее характерного режима работы ЭП, когда двигатель создает движущийся момент, а исполнительный орган - тормозящий, уравнение движения принимает вид:

 

.

 

Расчетная схема механической части электропривода представлена на рис. 1.3.

Рис. 1.3

 

В случае приведения к валу двигателя суммарный приведенный момент инерции ЭП J? может быть выражен общей формулой:

 

J? = Jдв + Jмуф + Jкс + Jш,

 

где Jдв - момент инерции ротора двигателя,муф - момент инерции муфты,кс - момент инерции редуктора,ш - момент инерции шпинделя с инструментом.

2. ВЫБОР СИСТЕМЫ ЭЛЕКТРОПРИВОДА И АВТОМАТИЗАЦИИ ПРОМЫШЛЕННОЙ УСТАНОВКИ

 

.1 Литературный обзор по теме дипломного проекта

 

.1.1 Асинхронный двигатель и коробка скоростей

На некоторых станках и до настоящего времени применяют трехфазные одно- и двухскоростные асинхронные двигатели с чисто механической системой регулирования скорости. Переключения шестерен коробки скоростей осуществляется с помощью электромагнитных фрикционных муфт. Ступенчатое механическое регулирование угловой скорости не обеспечивает для разных диаметров инструмента обработки наиболее выгодную скорость резания. Следовательно, станок не может обеспечить высокую производительность при различных диаметрах инструмента. Кроме того, коробка скоростей представляет собой довольно сложную и громоздкую конструкцию, стоимость которой возрастает с увеличением числа ступеней.

 

2.1.2 Электроприводы постоянного тока ЭПУ1

Трехфазные тиристорные электроприводы ЭПУ1 по назначению делятся на две группы: для механизмов подач и для главного движения станков (исполнение Д). Электроприводы выпускаются нескольких модификаций в виде нереверсивного (ЭПУ1-1) и реверсивного (ЭПУ1-2) с двух- и однозонным регулированием скорости с обратной связью по скорости (исполнение М) или с обратной связью по ЭДС (исполнение Е).

Силовые схемы ТП для питания якоря двигателя ТПЯ выполняются по трехфазной мостовой схеме с силовыми оптронными тиристорами на токи до 100 А и силовыми тиристорами на токи 200, 400, 630 А с одним комплектом вентилей для нереверсивного ЭП и двумя для реверсивного. ЭП выполняются с трансформаторным питанием с трех- и двухобмоточными трансформаторами Т с выпрямленным напряжением соответственно 115 и 230 В и с токоограничивающими реакторами L с выпрямленным напряжением 230 В и при напряжении сети 220 В. В якорной цепи для высокомоментных двигателей предусмотрен сглаживающий реактор L1. Выпрямитель для обмотки возбуждения двигателя выполняется по одно- и трехфазным схемам выпрямления с диодами. В двухзонных ЭП используется ТП возбуждения. Он выполняется по однофазной мостовой полууправляемой схеме с двумя оптронными тиристорами и двумя диодами (на токи ЭП до 100А) и