История системного подхода в науке и технике

Дипломная работа - Философия

Другие дипломы по предмету Философия

геометризованном духе не только гравитационное, но и другие виды полей; разработать ОТО применительно к миру элементарных частиц; и т.д. Экспериментально давно было установлено, что обе массы эквивалентны друг другу с точностью до некоторого постоянного соотношения между измеряющими их единицами. В плане ОТО эта эквивалентность означает эквивалентность инерционных и гравитационных полей.

Инертная масса m определяется ньютоновским соотношением F=mа и служит мерой инерции тела: чем больше инертная масса тела, тем меньше ускорение (под действием одной и той же силы) оно приобретает, иными словами, тем больше его инерция. Но вместе с тем масса выступает как источник поля тяготения и с этой точки зрения определяется уже рассмотренной нами в разделе 2.2.1 формулой где r - расстояние между двумя взаимно притягивающимися телами, m1 и m2 - их массы, G - гравитационная постоянная. В этом смысле, т.е. как источник тяготения массу называют гравитационной.

Вообще говоря, теоретически (в рамках классической физики) можно представить себе, что инертная и гравитационная массы не находятся ни в каком определенном соотношении и даже не взаимосвязаны. Однако опыт с очень высокой степенью точности показывает, что они эквивалентны, т.е. при соответствующем подборе единиц измерения оказываются равными. Собственно именно благодаря этой эквивалентности мы и можем определять массу тела взвешиванием. Если в рамках классической механики эквивалентность гравитационной и инертной масс выглядит чисто эмпирическим фактором, то в теории относительности этот факт получил теоретическое объяснение. Оно заключается в “распространении принципа относительности на системы координат, движущиеся неравномерно друг относительно друга. Действительно, такая концепция приводит нас к признанию единства инерции и тяготения; в зависимости от того, каким образом мы их рассматриваем, одни и те же силы могут представляться находящимися под действием только сил инерции или под совместным действием как сил инерции, так и тяготения … Возможность объяснить численное равенство между инерцией и тяготением на основе единства их природы доставляет общей теории относительности столь большое превосходство над представлениями классической механики, что все трудности, с которыми она сталкивается в своем развитии, следует по сравнению с этим считать незначительными" (А. Эйнштейн. Сущность теории относительности. М., 1955, с.54-55).

 

3.12 Открытие элементарных частиц

 

Одним из отличий постклассических представлений от более ранней физики является изменившаяся картина материи. В основе этой картины в XX в. лежит идея элементарной частицы как далее неделимой структуры. К концу столетия стало общепризнанным, что самое свойство “неделимости” не так очевидно, как думали ранее. Если элементарные частицы и не делятся на части, то они в очень широких пределах друг в друга превращаются. Но в течение большей части XX в. в сознании ученых элементарные частицы были носителями свойства “неделимости” подобно тому, как раньше это свойство приписывали атомам. Что же касается атомов элементов, то они конечно, уже не были в понимании XX в., как для античных мыслителей или для ученых XVII-XIX вв., чем-то неделимым, но мыслилась как состоящая из частей: из электронов и ядра, которое в свою очередь включает в свой состав ряд элементарных частиц.

Открытие античастиц явилолсь одним из примеров введения постклассическим естествознанием правил, не могущих быть понятыми или интерпретированными в рамках классической физики.

За последние десятилетия был открыт (точнее, вычислен, предположен на основе убедительных математических соображений) еще целый ряд “виртуальных”, существующих по-видимому, но не обнаруживаемых в эксперименте частиц, для которых не выполняются обычные соотношения между массой, импульсом и энергией. С другой стороны, много непривычных свойств (например, дробность электрического заряда и т.д.) постулировано для таких ненаблюдаемых, но необходимых для обоснования многих процессов в микромире, как кварки и актикварки (см.2.4.1). В особую категорию выделены, начиная с 1950-х годов (работы Э. Ферми) короткоживущие возбужденные состояния адронов - “резонансы”. В конечном счете нет уверенности, что известные сейчас элементарные частицы являются подлинно элементарными в смысле неразложимости. Однако существенно, в частности в плане концепции корпускулярно-волнового дуализма (см.2.4.2), что каждой частице ставится в соответствие определенный вид поля. Из всех элементарных частиц выделяется группа частиц, возможно, “элементарных" в полном смысле слова, которые определяют всю специфику процессов в микромире. Это кварки и лептоны (частицы со спином 1/2); бозоны, фотоны, глюоны - частицы, “склеивающие” кварки в нуклоне (спин 1/2); а также гипотетические гравитоны.

В настоящее время решается задача объяснить на основе известных и предполагаемых свойств элементарных частиц важнейшее свойство атома - его устойчивости в течение огромных промежутков времени. В первом приближении объяснение этого было достигнуто уже Планком с помощью его гипотезы об элементарном кванте действия (синоним: постоянная Планка, см.2.4.1). Как писал Н. Бор, “… только существование кванта действия препятствует слиянию электронов с ядром в нейтральную тяжелую частицу, практически бесконечно малого размера. Признание такого положения тотчас же навело на мысль описывать удержание каждого электрона п?/p>