История системного подхода в науке и технике

Дипломная работа - Философия

Другие дипломы по предмету Философия

µно Планком для фотонов.

Э. Шредингер, используя бройлевское обобщение, создал в 1926 г. волновую механику - теорию движения микрочастиц, в которой для описания состояния микрочастиц введена волновая функция. Опыт подтвердил, что все микрочастицы обладают также и волновыми свойствами, а волновым процессам и следовательно, полям присуща дискретность. Таким образом, благодаря корпускулярно-волновому дуализму, вопреки буквальному смыслу слова “дуализм”, была преодолена противоположность между двумя ранее признававшимися формами существования материи: веществом и полем.

Ярким примером проявления корпускулярно-волнового дуализма служат опыты с электронами, в которых у последних наблюдаются, с одной стороны, типичные корпускулярные свойства (электроны) обнаруживают при столкновениях определенную энергию и импульс, имеют траекторию движения и сместе с тем волновые свойства (подтверждаются диффракции; дают интерференционную картину). В отличие от движения классических (более крупных) частиц для движения, микрочастицы не могут быть одновременно определены координата и импульс: это так называемый “принцип неопределенности”. Он тесно связан с другим, более широким принципом: с принципом дополнительности, согласно которому для познания явлений в их целостности необходимо применение взаимоисключающих (взаимно “дополнительных”) классов понятий. Для микрочастиц такими дополнительными понятиями как раз и являются понятия импульса и координаты, или понятия волны и частицы. Идея дополнительности далеко выходит за пределы физики: например, в концепции естественного отбора дополнительны друг другу внутренние (изменчивость генома) и внешние (влияние среды) факторы, в психологии - детерминизм и свобода.

 

3.9 Специальная теория относительности Эйнштейна (теория электромагнитного поля)

 

К концу XIX столетия классическое естествознание, которое как раз к этому времени сложилось в целостную и относительную законченную систему знаний о природе и ее законах, давшую возможность описывать и объяснять, казалось бы, любые феномены на основе принципов (1) детерминизма (учения о всеобщей детерминированности), (2) единства закономерностей поведения объектов микро - и макромира, а также (3) сведения высших уровней организации к низшим. Считалось, например, что биологические и даже психологические явления со временем будут сведены к химическим и физическим, а поведение любой сколь угодно сложной системы можно будет вычислить на будущее, если заданы начальные условия.

В основе сложившегося, таким образом, к концу XIX в. классического естествознания - и прежде всего, его наиболее законченной части, механики и физики, - лежала, как было сказано, механистическая жестко детерминистская картина мира и редукционизм (учение о всеобщем значении принципа редукции) как ее важная предпосылка. Осталось несколько аномалий, т.е. фактов несомненных, но не поддававшихся объяснению при имевшемся концептуальном аппарате: прежде всего, несогласованность электродинамики Максвелла с ньютоновской механикой, - несогласованность, которую пытались устранить допущением единой мировой среды, эфира, но эта гипотеза вела к еще большим трудностям и противоречила экспериментальным данным. Далее, не удавалось объяснить отклонение лучей света от прямой траектории при их прохождении около Солнца и некоторые неправильности (по сравнению с тем, что должно было следовать из вычислений), наблюдаемые в годичных смещениях перигелия Меркурия.

Однако по сравнению с бесчисленным множеством явлений, вполне удовлетворительно разъясненных классическим естествознанием, оставшиеся аномалии (заметим, что в XX в. они были разъяснены теорией относительности А. Эйнштейна, см.2.4.3 и 2.4.4) не представлялись особенно важными. Не угасала надежда на их устранение в ходе дальнейшего прогресса классического естествознания.

К тому же в течение всего времени своего формирования (условно - до середины XIX в) и господства (вторая половина XIX в.) классическое естествознание многократно подкреплялось данными практики. Вся техника и промышленность девятнадцатого, в значительной мере и двадцатого века была основана на полученном классической физикой теоретическом и экспериментальном знании, в частности, о свойствах главных для XVIII - первой половины XIX в. (пар) и для последующего периода (электричество) видах энергии.

Наука превратилась к концу XIX в. в социальный институт и неотъемлемую часть культуры всех развитых стран, стала (особенно это касается естествознания) одной из важнейших производительных сил. Отрицательные последствия науки (для экологии, в плане создания средств массового уничтожения и т.п.) еще не выглядели чет-то опасным, и сциентизм (надежда на науку как средство решения всех социальных проблем) был распространенной формой идеологии. По сравнению со всеми остальными социальными сферами и институтами, естествознание выступило как нечто наиболее прогрессивное и прогрессирующее. Казалось, что дальнейшая достройка огромного здания естественных наук будет заключаться лишь в выяснении второстепенных деталей и во все новых и новых прикладных приложениях классического естествознания, само же оно остается неоспоримым. Тем не менее на рубеже XIX и XX вв. ситуация изменилась, что привело к формированию современного естествознания, которое по отношению к классическому (или как иначе говорят, ньютоно-линнеевскому) часто называют неклассическим или постклассическим.