Исследование каталитических процессов прямого гидрокрекинга триглицеридов жирных кислот

Информация - Химия

Другие материалы по предмету Химия

ая7,4780Al2O3 - SiO2Аморфная65 - 130300 - 600

Аморфный характер Al2O3 - SiO2 позволяет получать преимущественно диены, без образования ароматических соединений. Аморфные катализаторы не обладают структурной селективностью по сравнению с катализаторами кристаллической структуры. Кроме того, Al2O3 - SiO2 имеет более низкую кислотность, чем кристаллические цеолитные катализаторы. Как следствие, крекинг с использованием алюмосиликата протекает более слабо, чем при использовании HZSM - 5 и фожазита.

Исходя из продуктов конверсии триглицеридов жирных кислот, в работе [1] было предположено, что крекинг ненасыщенных триглицеридов жирных кислот может протекать по двум различным путям (рис.1).

 

Рисунок 1. Схема крекинга ненасыщенных триглицеридов жирных кислот

 

По первому пути происходит образование соответствующих карбоновых кислот и углеводородов (пропена и пропана) с последующими процессами декарбоксилирования, декарбонилирования и крекинга, в результате которых образуются оксиды углеродов и С17Н34. Последняя стадия этого пути включает крекинг, олигомеризацию и ароматизацию с образованием ароматических продуктов.

По второму пути происходит образование карбокатиона вследствие крекинга триглицерида по двойной связи С= С остатка кислоты с последующими процессами олигомеризации и ароматизации. Параллельно идут процессы циклизации и изомеризации. Однако в результате, образование ароматических соединений может быть объяснено как по первому, так и по второму маршруту конверсии триглицеридов жирных кислот.

Пиролиз соевого, пальмового и касторового масел изучался в работе [] на катализаторе HZSM - 5. Эксперимент проводился в температурном диапазоне 350 - 4000С, после охлаждения в коллекторе образовывалась смесь двух жидких фракций: водной и органической. Фракции разделялись декантацией, и органическая фаза дистиллировалась с использованием стандартного лабораторного оборудования. В результате образовались четыре фракции с различными температурами кипения:

) < 800С;

) от 800С до 1400С;

) от 1400С до 2000С;

) > 2000С (тяжелая фракция). Причем, соевое и касторовое масла позволяют получать при одинаковой температуре пиролиза одинаковые выходы фракций. С другой стороны, пальмовое масло вступает в реакцию при более низкой температуре и на выходе дает более высокий процент тяжелой фракции. В табл.2 представлен состав используемых растительных масел.

 

Таблица 2. Состав растительных масел

МаслоЖирные кислоты (мас. %) Пальми-тиноваяСтеари-новаяОлеиноваяЛинолеваяЛиноле-новаяРицино- леиноваяСоевое14424526-Пальмовое3564415--Касторовое2352-88

В настоящее время интенсивные исследования проводятся в области создания катализаторов и процесса каталитического крекинга растительных масел с получением биодизеля. Применение таких катализаторов, как микропористые цеолиты HZSM-5, мезопористые MCM-41 и композиты на их основе позволяют при 450оС конвертировать пальмовое масло на 77 - 99% с образованием жидкого органического продукта (в зависимости от состава катализатора, выход 56 - 78%), газообразных продуктов (7 - 22%), кокса (1 - 12%) и воды (1 - 7%). Химический состав жидкого органического продукта, определенный в работах [, ] представлял собой смесь свободных жирных кислот, бензола (5%), толуола (20%) и ксиленов (23%).

Согласно другим исследованиям [2, ] при пиролизе соевого, пальмового, касторового и рапсового масел при температурах выше 350оС также образуются тяжелые ароматические соединения и свободные жирные кислоты. При этом приведенные результаты фракционного анализа для различного исходного сырья оказались достаточно близкими (табл.3).

 

Таблица 3. Фракционный анализ продуктов пиролиза растительных масел

Растительное маслоТемпература пиролиза, оСВыход отдельных температурных (оС) фракций дистиллята, вес. % 200Соевое350 - 40010151550Пальмовое330 - 38079975Касторовое350 - 40010102060

При масс-хроматографическом анализе тяжелой фракции продуктов пиролиза пальмового масла были идентифицированы н-алкильная карбоновая кислота C9COOH, и углеводороды н-C14H28, C14H30, н-C14H30, C15H30, н-C15H30, C15H32, C16H32.

В работе [] был изучен процесс каталитического крекинга рапсового масла при температурах 485 - 585оС на катализаторе Ecat/ZSM-5 (где Ecat - коммерческий катализатор; Ecat =80 мас. %, ZSM-5 = 20 мас. %) в условиях, приближенных к условиям практического применения в промышленности.

В продуктах реакции были выявлены бензин (C5 - 215C), легкие циклические масла (215 - 325C), тяжелые циклические масла (325+C). Тяжелые циклические масла были фракционированы на 4 составляющие (325 - 360C), жирные кислоты (360 - 400C), промежуточные компоненты (400 - 520C), и триглицериды (520+C). В бензиновой фракции были идентифицированы n-парафины, изо - парафины, нафтены, н - олефины, изо - олефины, и ароматические соединения с точкой кипения до 200C (примерно соответствующие C11).

На основании полученного распределения продуктов был предложен следующий механизм превращения триглицеридов жирных кислот рапсового масла (рис.2).

 

Рисунок 2. Механизм превращения триглицеридов рапсового масла [17]

 

Молекула рапсового масла последовательно разрушается с образованием жирной кислоты и эфира глицерол-ди-жирной кислоты, который обладает единственной двойной связью в структуре глицерольной цепи. Вторая стадия приводит к образованию эфира глицерол - моножирной кислоты с двумя двойными связями в структуре глицерольной цепи (аллильная группа). Было отмечено, что вторая стадия может произойти только тогда, к