Идентификация микроводорослей Euglena glacilis и анализ их чувствительности к ингибирующим веществам

Дипломная работа - Биология

Другие дипломы по предмету Биология



?очникам, колеблются от 52 до 84 С. Всего обнаружено около 200 видов термофильных водорослей, однако видов, живущих только при высоких температурах, среди них сравнительно немного. Большинство из них способно выдерживать высокие температуры, но обильнее развиваются при обычных температурах. Типичными обитателями горячих вод являются синезеленые, в меньшей степени - диатомовые и некоторые зеленые водоросли.

)Водоросли снега и льда:

Водоросли снега и льда составляют подавляющее большинство организмов, поселяющихся на замерзших субстратах (криобиотопах). Общее число видов водорослей, обнаруженных на криобиотопах, достигает 350, но истинных криофилов, способных вегетировать только при температурах, близких к 0 С, значительно меньше: немногим более 100 видов. Это микроскопические водоросли из которых подавляющее большинство относится к зеленым водорослям (около 100 видов); несколькими видами представлены синезеленые, желтозеленые, золотистые, пирофитовые и диатомовые водоросли. Все эти виды обитают в поверхностных слоях снега или льда. Их объединяет способность выдерживать замерзание без нарушения тонких клеточных структур и затем, при оттаивании, быстро возобновлять вегетацию, используя минимальное количество теплоты. Лишь немногие из них имеют стадии покоя, большинство лишены каких-либо специальных приспособлений для перенесения низких температур.

Развиваясь в массовом количестве, водоросли способны вызывать зеленое, желтое, голубое, красное, коричневое, бурое или черное "цветение" снега и льда.

)Водоросли соленых водоемов:

Эти водоросли вегетируют при повышенной концентрации в воде солей, достигающей 285 г/л в озерах с преобладанием поваренной соли и 347 г/л в глауберовых (содовых) озерах. По мере увеличения солености количество видов водорослей уменьшается, очень высокую соленость переносят лишь немногие из них. В крайне засоленных (гипергалинных) водоемах преобладают одноклеточные подвижные зеленые водоросли. Нередко они вызывают красное или зеленое "цветение" соленых водоемов. Дно гипергалинных водоемов иногда сплошь покрыто синезелеными водорослями. они играют большую роль в жизни соленых водоемов. Сочетание органической массы, образуемой водорослями, и большого количества растворенных в воде солей обуславливает ряд своеобразных биохимических процессов, свойственных этим водоемам. Например, хлороглея сарциноидная (Chlorogloea sarcinoides) из синезеленых, в огромных количествах развивающаяся в некоторых соленых озерах, а также ряд других массово растущих водорослей, участвуют в процессе образования лечебных грязей[5]

Для биологической индикации качества вод могут быть использованы практически все группы организмов, населяющие водоемы: планктонные и бентосные беспозвоночные, простейшие, водоросли, макрофиты, бактерии и рыбы. Каждая из них, выступая в роли биологического индикатора, имеет свои преимущества и недостатки, которые определяют границы ее использования при решении задач биоиндикации, так как все эти группы играют ведущую роль в общем круговороте веществ в водоеме. Организмы, которые обычно используют в качестве биоиндикаторов, ответственны за самоочищение водоема, участвуют в создании первичной продукции, осуществляют трансформацию веществ и энергии водных экосистем.

Наиболее разработанной оценкой степени загрязненности вод по индикаторным организмам является система сапробности. Метод учитывает относительную частоту встречаемости гидробионтов h (от 1 до 9 или от единичных экземпляров в поле зрения микроскопа и до очень частой встречаемости, когда их много в каждом поле зрения) и их индикационную значимость S. Для статистической достоверности результатов необходимо, чтобы в пробе содержалось не менее 12 видов индикаторных организмов одной зоны сапробности с . Индикаторные значимости S для соответствующих зон сапробности табулированы для многих организмов. По рассчитанной величине S можно судить о состоянии водоема. Заключение о степени загрязненности воды дают обычно по системе баллов от одного до шести.

Среди огромного разнообразия микроводорослей наиболее часто для оценки действия веществ применяются обитающие в планктоне водоросли отдела Chlorophyta, в то время как представители других отделов остаются малоизученными, что особенно касается бентосных микроводорослей.

Загрязнение морской воды является комплексным и, следовательно, оценку его характера и действия можно провести только с помощью биотестирования, которое средством получения принципиально новой информации о загрязнении. Одноклеточные водоросли, вследствие круглогодичной доступности и высокой чувствительности, широко применяются в качестве тест-объектов при биотестировании [6].

1.3 Методы наблюдения и описания подвижности микроводорослей

1.3.1 Изменение подвижности микроводорослей в присутствии антибиотиков

Проблема биологической подвижности является одной из ключевых проблем современной биофизики. Разнообразные типы подвижности присущи живым объектам на всех уровнях организации: от отдельных клеточных органелл до высокоорганизованной подвижности организмов в целом. При всей широте ее проявлений в основе любого движения в биологической системе лежит фундаментальный процесс преобразования энергии химических связей макроэргических молекул в механическую работу. Универсальность этого преобразования и его высокая эффективность, с одной стороны, а также очевидная значимость роли п?/p>