Емісія електронів. Електричний струм в газах
Методическое пособие - Физика
Другие методички по предмету Физика
?тралізації двох різнойменних іонів, або позитивного іона та електрона при їх зіткненні називається рекомбінацією. Причому при рекомбінації надлишкова енергія виділяється, здебільшого, в вигляді кванта світла, тобто процес рекомбінації може супроводжуватись світінням газу.
Рис. 3
Таким чином, при дії іонізатора на газ в закритій посудині буде відбуватись іонізація та рекомбінація і при цьому настане динамічна рівновага: кількість пар зарядів, що виникають під дією іонізатора буде дорівнювати кількості рекомбінуючих пар зарядів. Такий рівноважний стан характеризується певною концентрацією зарядів n. Наприклад: в атмосфері Землі під впливом радіоактивного випромінювання Землі та космічних променів . Отже, при наявності зарядів в газі, газ може проводити електричний струм.
Процес проходження електричного струму через газ називається газовим розрядом.
Досліди показують, що характер газового розряду залежить від багатьох факторів: хімічної природи, тиску, температури газу; геометрії і температури електродів, напруги, тощо.
Газовий розряд може мати різноманітні форму і супроводжуватися світінням та звуковими ефектами.
По способу одержання вільних зарядів розрізняють два види електричних розрядів:
несамостійний розряд.
самостійний розряд.
НЕСАМОСТІЙНИЙ ТА САМОСТІЙНИЙ РОЗРЯДИ ТА ЇХ ХАРАКТЕРИСТИКИ
Несамостійним розрядом називають такий розряд для виникнення і підтримання якого крім електричного поля необхідний зовнішній іонізатор. Такий розряд не супроводжується світінням газу і якщо іонізатор припиняє свою дію, то припиняється і газовий розряд.
Провідність газів можна вивчити за допомогою установки, схема якої приведена на рис. 1.
Рис. 1
Газ заповнює скляний балон І на газ діє іонізатор S . Змінюючи напругу U між електронами і вимірюючи силу струму І знаходимо залежність струму від напруги ВАХ газового розряду, яка має вигляд, зображений на рис. 2
Рис. 2
Розглянемо несамостійний розряд. При наявності електричного поля позитивні іони рухаються до катоду, одержують від металу електрон і перетворюються в нейтральні атоми, негативні іони та електрони рухаються до аноду.
Причому, як видно із графіка при малих напругах виконується закон Ома (ОА)
,
де - питома електропровідність газового розряду.
Така залежність пояснюється тим, що із збільшенням напруги збільшується число зарядів, які надходять із обєму газу на електроди. Оскільки густина струму J = en , струм в газі визначається рухом іонів обох знаків, то для густини струму в газі одержимо:
,
де і - заряди іонів, і - їх концентрація, і - відповідно їх швидкості. Так як швидкість іонів пропорційна напруженості поля
де і - рухливості іонів, то для випадку одновалентних іонів маємо
.
Порівнюючи цей вираз з законом Ома
одержимо питому електропровідність газу
Рухливість іонів чисельно дорівнює швидкості їх напрямленого руху при напруженості поля E = 1В/м. Закон Ома виконується для напруг, менших .
При подальшому збільшенні напруги () ділянка ВС, струм в газі буде сталим, незмінним. Цей струм називають струмом насичення . Це такий струм, коли всі заряди, що виникають під впливом іонізатора ( попадають на електроди. Причому
,
де d відстань між електродами.
Струм насичення не залежить від напруги і являється важливою характерною несамостійного розряду. Але якщо й дальше збільшувати напруги то струм в газі почне різко збільшуватись (ділянка СД) і несамостійний газовий розряд перетворюється в самостійний це такий розряд, який зберігається після припинення дії іонізатора. Причому газ починає інтенсивно світитись за рахунок рекомбінації зарядів.
Напруга, при якій несамостійний розряд перетворюється в самостійний називається напругою запалювання, або напругою пробою .
При самостійному розряді заряди в газі утворюються за рахунок ударної іонізації. А це можливо тоді, коли під дією зовнішнього електричного поля електрон на шляху вільного пробігу набуває енергії, більшої за енергію (роботу) іонізації. При непружному зіткненні електрона з атомом газу виникають позитивний іон і один новий електрон. При наступному непрожному удару вже двох електронів з атомами виникає додатково ще два нових електрони і т.д. Такий процес називають електронною, або іонною лавиною. Але цього недостатньо. Щоб розряд був самостійним, щоб електронні лавини підтримували самі себе, треба щоб у газі відбувався ще один процес, в результаті якого утворювалися б нові електрони. Це може бути вторинна електронна емісія, фотоіонізація газу.
Внаслідок електронної лавинної іонізації струм самостійного газового розряду (рис.2 СД) різко зростає і його необхідно обмежувати. Для цього послідовно з газовим розрядом включають навантаження (дросель або резистор).
ВИДИ САМОСТІЙНОГО РОЗРЯДУ
Самостійний розряд розпочинається тоді, коли на довжині вільного пробігу електрон в електричному полі набуває кінетичну енергію достатню для іонізації атомів чи молекул. Причому, після кожного зіткнення кількість електронів подвоюється і загальна кількість зарядів в газі різко збільшується, утворюється лавина зарядів.
Сила струму, що виникає при самостійному розряді визначається за формулою:
,