Емісія електронів. Електричний струм в газах

Методическое пособие - Физика

Другие методички по предмету Физика

µктронних струмів, світлових сигналів. За допомогою таких помножувачів можна отримати коефіцієнт підсилення первинного струму порядку .

В електронних лампах вторинна емісія із аноду шкідлива (вона зменшує анодний струм), тому в лампах вводиться спеціальна сітка, яка змушує вторинні електрони повертатись до аноду.

Автоелектронна емісія спостерігається з металів, які знаходяться в сильному електричному полі ( В/м). Причому процес автоелектронної або холодної емісії принципово відрізняється від термоелектронної емісії. При термоелектронній, або іншій емісії, щоб електрон вилетів із металу йому необхідно надати енергію.

А при автоелектронній емісії електрони вилітають внаслідок тунельного ефекту, фізична суть якого розкривається в квантовій механіці.

 

ВИСНОВКИ

 

Для вильоту електрону із речовини, йому необхідно мати енергію, щонайменше, рівну роботі виходу, яка залежить від хімічної природи речовини і, в значній мірі, від стану поверхні речовини. Тому в електронних лампах широко використовуються оксидні катоди.

Явище термоелектронної емісії спостерігається при нагріванні електродів (катодів), воно широко використовується на практиці в електронних лампах, електронно-променевих трубках та ін. Причому густина струму насичення різко збільшується при підвищенні температури катода та при зменшенні роботи виходу.

Крім термоемісії існують інші її види вторинна електронна емісія, автоемісія й ін. Ці явища враховуються і використовуються на практиці в електронних лампах, фотопомножувачах тощо.

НАВЧАЛЬНА ЛІТЕРАТУРА

 

1. Гусева Г.Б. Курс физики. 48-49

2. Савельев И.В. Курс физики, т.2, Курс общей физики.-М.: 1989. 74-75

3. Трофимова Т.И. Курс физики,-М.: Высшая школа, 1985, 432 с. 104-106

 

 

 

 

 

 

 

 

 

План лекції

з навчальної дисципліни

ФІЗИКА

Тема ЕЛЕКТРИЧНИЙ СТРУМ В ГАЗАХ

 

ОРГАНІЗАЦІЙНО-МЕТОДИЧНІ ВКАЗІВКИ ДО ПРОВЕДЕННЯ ЛЕКЦІЇ

 

При проведенні заняття необхідно памятати, що курсанти знають що таке електричний струм і які бувають заряди. Причому в металах носіями зарядів є електрони, а в газах електрони і іони. Необхідно підкреслити, що при проходженні струму в газі відбуваються: іонізація і рекомбінація, яка супроводжується світінням газу (продемонструвати це). Характеризуючи несамостійний та самостійний розряди важливо виділити струм насичення та лавинний характер утворення зарядів при самостійному розряді, його практичне значення.

Розглядаючи плазму, особливу увагу звернути на її характеристики та практичне використання і перспективи.

 

ВСТУП

 

Фізика газових розрядів являє собою один із розділів класичної фізики. Систематичне вивчення газових розрядів розпочалось після створення штучних джерел електричного струму. А з 70-х років ХХ ст. розпочались і проводяться інтенсивні дослідження в області фізики газового розряду. Завдяки цьому відкрито і досліджено нові типи розрядів і способи їх збудження, зокрема такі, як лазерний розряд, розряди що підтримуються електронним і ультрафіолетовим пучками. Різко розширилась область зміни параметрів газового розряду тощо.

Багатогранність властивостей електричного розряду в газах і можливість змінювати значення їх основних параметрів зумовлюють досить широке практичне застосування електричного розряду, в тому числі і в військовій техніці звязку. Наприклад, велика кількість іонних приладів є елементами електричних схем, які призначені для перетворення струму, стабілізації напруги, сигналізації (газотрони, тиратрони, ртутні випрямлячі та ін.).

 

ЕЛЕКТРИЧНИЙ СТРУМ В ГАЗАХ

 

Електричний струм в металах зумовлений рухом вільних електронів під дією електричного поля. На відміну від металів гази складаються із нейтральних атомів чи молекул і в них немає вільних зарядів, які б змогли рухатись під впливом електричного поля. Тому гази при нормальних умовах не проводять електричного струму, тобто являються діелектриками.

Газ буде провідним, якщо створити в ньому вільні носії зарядів, а для цього треба частину його атомів та молекул іонізувати.

Іонізація газу це процес розщеплення атома, чи молекули на електрон і позитивний іон.

Газ може бути іонізованим під впливом ультрафіолетових, рентгенівських, радіоактивних променів, видимого світла, при нагріванні тощо.

 

Рис. 1

 

Якщо відірваний від атома електрон приєднається до нейтрального атома чи молекули то утворюється негативний іон.

 

Рис.2

 

Отже в газі можуть бути електрони, позитивні та негативні іони.

Оскільки атоми або молекули є стійкими системами заряджених частинок, то для їхньої іонізації треба виконати роботу проти сил взаємодії між електроном, що виривається, та іншими частинками атома або молекули.

Робота, яку необхідно виконати, щоб відірвати електрон від атома (молекули) називається роботою іонізації Аі (аналогічна роботі виходу електрону).

 

,

 

де - потенціал іонізації атома (молекули).

Робота іонізації залежить від хімічної природи газу і стану електрона, який виривається. Найменша робота іонізації для валентних електронів. На практиці робота іонізації вимірюється в еВ. (В СІ Дж).

При сталій дії іонізатора на газ концентрація зарядів в газі збільшується, тому збільшується й ймовірність зустрічі різнойменних зарядів і їх нейтралізація.

Процес не?/p>