Дифракция света
Информация - Разное
Другие материалы по предмету Разное
p>Диффузным (рассеяныым) отражением света называется отражение света во всевозможных направлениях. Оно наблюдается, например, при отражении света от шероховатой поверхности раздела двух сред. Поверхность называется абсолютно матовой, если она отражает свет равномерно по всем направлениям .
Рефракцией света называется искревление световых лучей вследствие преломления в оптически неоднородной среде с непрерывно изменяющемся от точки к точке показателем преломления. Примером рефракции света может служить астрономическая рефракция искривление лучей света от небесных тел при прохождении сквозь атмосферу Земли, обусловленное уменьшением плотности атмосферы. При некоторых условиях в результате земной рефракции возникают миражи..
2 Принцип Гюйгенса - Френеля
Дифракцией света называют совокупность явлений, которые обусловлены волновой природой света и наблюдаются при его распространении в среде с резко выраженными неоднородностями (например, при прохождении через отверстия в непрозрачных экранах, вблизи границ непрозрачных тел и т.д.) В более узком смысле под дифракцией понимают явление огибания светом малых препятствий, т.е. отклонения от законов геометрической оптики и следовательно проникновение света в область геометрической тени.
Дифракцию света Френель объяснил как результат интерференции вторичных волн согласно принципу Гюйгенса-Френеля. [Гюйгенса-Френеля принцип это приближенный метод решения задач о распространении волн, особенно световых. Согласно принципу Гюйгенса-Френеля, каждый элемент поверхности, которой достигла в данный момент волна, является центром элементарных волн, огибание которых будет волновой поверхностью в следующий момент времени.Рис.1.Положение фронта распространяющейся волны может быть в любой момент времени представлено огибающей всех вторичных (элементарных) волн, рис.1. Источниками вторичных волн являются точки, до которых дошел фронт первичной волны в предшествующий момент времени. При этом предполагается, что вторичные волны излучаются только вперед, т.е. в направлениях, составляющих острые углы с направлением внешней нормали к фронту первичной волны. Принцип Гюйгенса позволяет объяснить законы отражения и преломления света, однако он недостаточен для объяснения дифракционной картины.
а) б)
Рис.1
Обратные элементарным волны во внимание не принимаются.
Френель в 1815 году дополнил принцип Гюйгенса (1678): ввел представление когерентности элементарных волн и интерференции волн.
Когерентность(находящийся в связи) согласованное протекание во времени и пространстве нескольких колебательных волновых процессов, проявляющихся при их сложении.
Когерентные колебания разность фаз постоянная или закономерно изменяется во времени и при сложении определяет результирующую амплитуду.
Гармонические колебания.
А амплитуда
w частотаконстанты
- фаза
Сложение двух гармонических колебаний
A?
а) б) в)
Рис.2
При большом отрезке времени ? случайное изменение фазы может превысить колебание стало неконкретным. Это оценивают функцией корреляции R(t). В этом случае
- средняя частота колебания.
R(t) = 1 при t=0 и R(t)=0 при t=oo
R(t) = 0,5 , t в этом случае называют временем когерентности или продолжительностью гармонического цуга.
В реальных волновых процессах амплитуда и фаза колебаний изменяются не только вдоль направления распространения волн, но и в плоскости перпендикулярной этому направлению.
Когерентность исчезнет, если в точках отстоящих на l от начальной разность фаз достигнет .
Для характеристики волны в плоскости перпендикулярной направлению ее распространения применяют термин площадь когерентности и пространственная когерентность. В этом случае вводит функцию корреляции RI(l).
Нагретое тело излучает совокупность сферических волн, по мере удаления от источника волна приближается к плоской и размер когерентности 1,22 ? r/?.
r расстояние до источника
? размер источника.
Для солнечного света размер когерентности 30 мкм. С уменьшением углового размера источника размер когерентности растет. r/? угол когерентности.
Графическое сложение амплитуд вторичных волн
Амплитуду волны в точке наблюдения можно рассчитывать на основе графического метода векторных диаграмм сложения одинаково направленных когерентных колебаний, возбуждаемых в этой точке всеми элементарными источниками вторичных волн. В пределах каждой зоны Френеля угол а между внешней нормлью к фронту и направлением в точку наблюдения, а также расстояние r доточки наблюдения изменяются крайне незначительно. Поэтому векторная диаграмма соответствующая одно зоне, имеет вид, близкий к полуокружности. Результирующая амплитуда вторичных волн от всех элементарных участков зоны равна диаметру этой полуокружности.
Результирующая амплитуда Аi вторичных волн от i-й зоны прямо пропорциональна площади этой зоны. Для равновеликих по площади зон (рис. 3) амплитуда Ai уменьшается по мере увеличения номера i зоны благодаря возрастанию угла а и расстояния r:A1>A2>A3>… В этом случае векторная диаграмма для системы зон имеет вид медленно скручивающейся спирали (рис. 4).
Для расчета дифракции света на прямолинейном крае плоского экрана или на прямолинейной щели метод зон Френеля неудобен, так как эти зоны оказываются частично закрытыми экраном. В этих случаях фронт падающей п?/p>