Действительные числа. Иррациональные и тригонометрический уравнения

Реферат - Математика и статистика

Другие рефераты по предмету Математика и статистика

Содержание

 

Иррациональные уравнения

Числовая функция. Способы задания функции

Основные свойства функции

Графики функций. Простейшие преобразования графиков функцией

Обратная функция

Степенная функции, её свойства и графики

Показательная функция, её свойства и графики

Показательные неравенства

Логарифмы и их свойства

Логарифмические уравнения

Тригонометрические функции числового аргумента

Функция y sinx ее свойства и график

Обратные тригонометрические функции, их свойства и графики

Частные случаи тригонометрических уравнений

Тригонометрические уравнения

Аксиомы стереометрии и следствия из них

Взаимное расположение двух прямых в пространстве

Скрещивающиеся прямые. Признак скрещивающихся прямых

Теорема о трех перпендикулярах

 

Алгебра

 

Действительные числа. Приближение действительных чисел конечными десятичными дробями.

Веще?ственное, или действи?,.

Абсолютная погрешность и её граница.

Пусть имеется некоторая числовая величина, и числовое значение, которое ей присвоено , считается точным, тогда под погрешностью приближенного значения числовой величины (ошибкой) понимают разность между точным и приближенным значением числовой величины: . Погрешность может принимать как положительное так и отрицательное значение. Величина называется известным приближением к точному значению числовой величины - любое число, которое используется вместо точного значения. Простейшей количественной мерой ошибки является абсолютная погрешность. Абсолютной погрешностью приближенного значения называют величину , про которую известно, что: Относительная погрешность и её граница.

Качество приближения существенным образом зависит от принятых единиц измерения и масштабов величин, поэтому целесообразно соотнести погрешность величины и ее значение, для чего вводится понятие относительной погрешности. Относительной погрешностью приближенного значения называ