Гістерезис феромагнетиків
Информация - Физика
Другие материалы по предмету Физика
Зовнішнє магнітне поле тут зменшується зі збільшенням відстані швидше, ніж у випадку а, і енергія, що міститься в полі, виявляється меншою. У випадку, показаному на рис. 4в, магнітне поле практично існує тільки в безпосередній близькості від поверхні магнетика й енергія поля ще менша. Накінець, на рис. 4г зображений випадок, коли в зовнішньому просторі магнітного поля зовсім немає. Тут існують замикаючі домени у формі тригранних призм, бічні поверхні яких складають кут 45 з вектором намагніченості. У наслідок цього магнітний потік проходить винятково всередині феромагнетика, він замикається граничними доменами, чим і обумовлена їхня назва - замикаючі домены. Стан г енергетично більш вигідний, ніж попередні стани, і тому феромагнетик, що знаходиться, наприклад, у стані а, буде прагнути перейти в стан г. Нарешті, на мал. 4д показана ціла сукупність доменів разом із замикаючими їх доменами, де також немає зовнішнього поля. Подібна форма доменів дійсно спостерігається на досліді. Таким чином, розбивка феромагнетика на домени відбувається тому, що при утворенні доменних структур енергія феромагнетика зменшується (Л.Д. Ландау й Е.М. Лифшиц).
Вище ми розглядали феромагнетик у відсутністі зовнішнього магнітного поля і враховували тільки його власну магнітну енергію. Якщо врахувати ще й інші джерела енергії, наприклад, механічні напруги або зовнішнє магнітне поле, то форма доменів визначалася б повною енергією системи. Тому при наявності механічних напруг і зовнішнього поля доменна структура змінюється.
При виникненні самовільного намагнічення (орієнтування електронних спінів) магнетик деформується. Якщо при температурі більш високій, ніж температура Кюрі, вирізати з монокристалла феромагнетика кулю, то при охолодженні нижче температури Кюрі куля перетвориться в еліпсоїд. Форма і розміри доменов змінюються і при перемагнічуванні. Тому феромагнетик, у цілому не намагнічений, а при намагнічуванні деформується.
Явище деформації при намагнічуванні було відкрито в середині минулого сторіччя Джоулем і одержало назву магнітострикції. Деформації, які виникають при цьому досить малі: відносні видовженні зразка Dl/l у полях порядку 105 А/м звичайно мають порядок
10-5 - 10-6. Магнітострикцію використовують, подібно зворотному пєзоелектричному ефекту для пристроїв потужних випромінювачів ультразвукових хвиль і для інших цілей.
Сили обмінної взаємодії викликають у феромагнетиках паралельну орієнтацію електронних спінів. Однак обмінні сили залежать від структури тіла, і тому характер оріентації спінів може бути різний. Виявляється, що існують речовини, у яких також виникає сильна орієнтація електронних спінів, але, на відміну від феромагнетиків, електронні спіни орієнтовані в них попарно антипаралельно. У найпростішому випадку електронні спіни утворять як би дві просторові підрешітки, вставлені одна в одну і намагнічені в протилежних напрямках (рис. 5).
Речовини, у яких намагніченість обох подрешіток одинакова по модулю, одержали назву антиферомагнетиків. Їхнє існування було передбачено теоретично Л.Д. Ландау в 1933 р. Антиферомагнетиками є деякі зєднання марганцю (MnO, MnS), хрому (NiCr, Сг2О3), ванадію (VО2) і ін. Подібні речовини при низьких температурах мають мізерно малу магнітну сприйнятливість.
Рис. 5. Характер намагнічування в антиферомагнетиках (а) і феритах (б) (схематично).
При підвищенні температури строго попарна антипаралельність електронних спінів порушується і магнітна сприйнятливість збільшується. При деякій температурі (антиферомагнітна температура Кюри або температура Нееля) області самодовільної оріентації електронних спінів руйнуються й антиферомагнетик перетворюється в парамагнетик. При подальшому підвищенні температури магнітна сприйнятливість, як у всякого парамагнетика, зменшується, а отже, при антиферомагнітній температурі Кюрі магнітна сприятливість має максимум. Якщо намагніченість обох підрешіток неоднакова по модулю, то зявляється незкомпенсований антиферомагнетизм і речовина може мати значний магнітний момент. Такий характер намагнічування має місце у ферритах
3. Процеси намагнічування феромагнетика
Однієї з основних задач теорії феромагнетизму є пояснення технічної кривої намагнічування, тобто залежності намагніченості від напруженості магнітного поля. У результаті численних досліджень була встановлена така загальна картина процесу намагнічування феромагнетиків. При відсутності зовнішнього поля феромагнетик розбивається на домени таким чином, що його результуючий магнітний момент близький до нуля. Це схематично показано на рис. 6а, де зображені чотири домена однакові по обєму, намагнічені до насичення з магнітним моментом Js/4, рівним чверті повного моменту усього магнетика в стані насичення. При включенні зовнішнього поля енергії окремих доменов стають неодинаковими: енергія менша для тих доменов, у яких вектор намагніченості утворить з напрямком поля гострий кут, і більше в тому випадку, якщо цей кут тупий. Тому виникає процес зсуву границь доменів, при якому обєм доменів з меншої енергією зростає, а з більшою енергією зменшується (рис. 66). У дуже слабких полях ці зсуви границь оборотні і встигають за зміною поля. Початкова сприйнятливість феромагнетиков і область l кривої намагнічування (рис. 6, е) обумовлені процесами оборотного зсуву границь.
Рис. 6. Різні типи процесів намагнічування феромагнетика (схематично); а - б) зсув границь, г