Гидродинамический расчет и анализ работы подшипников скольжения автомобильного двигателя

Информация - Производство и Промышленность

Другие материалы по предмету Производство и Промышленность

сть,

граненость.

5.1.1 На рис. 5.1.1 приведена классификация и расчетные форму-

лы для приведенных выше дефектов.

5.2 НЕСУЩАЯ СПОСОБНОСТЬ при наличии ДЕФЕКТА

5.2.1 На рис. 5.2.1 приведены зависимости изменения несущей

способности при корсетном или бочкообразном искажении формы.

Величина дефекта 5 микрон. Дано сравнение с правильным ци-

линдрическим подшипником. Из графиков видно, как происходит

потеря несущей способности.

На рис. 5.2.2 - 5.2.5 показано влияние дефектов: эксцен-

триситета, эллипсности и гранености( три грани).

5.2.2 На рис. 5.2.2 даны несущие способности этих трех типов

дефектов в направлении смещения при отсутствии дефекта -

верхние кривые и в направлении максимального дефекта - ниж-

ние кривые. Как видно из графиков существует сущестенное

различие несущих способностей в зависимости от направления

смещения.

5.2.3 На рис. 5.2.3 приведены наибольшие несущие способности

для всех трех случаев и дано сравнение с бездефектным ци-

линдрическим подшипником ( верхняя кривая). Как видно из

графиков к наибольшей потери несущей способности приводит

граненость.

5.2.4 На рис. 5.2.4 приведены минимальные несущие способности

для тех же случаев и сравнение с цилиндрическим подшипником.

На этом режиме несущая способность в районе критических за-

зоров в 5 - 6 раз меньше, чем у бездефектного подшипника и

почти не зависит от формы дефекта.

5.2.5 На рис. 5.2.5 приведены графики изменения гидродинами-

ческого давления подшипника с указанными дефектами без

смещения. Для цилиндрического подшипника на этом режиме гид-

родинамическое давление не возникает. Для дефектных подшип-

ников возникают волны давления в соответствии с количеством

волн дефекта.

 

- 22 -

5.3 НЕСУЩАЯ СПОСОБНОСТЬ при наличии ПЕРЕКОСА

На рис. 5.3.1-5.3.5 показано влияние направления переко-

са втулки относительно шейки подшипника. Величина перекоса

во всех случаях 1 микрон. На графиках кроме обычных зависи-

мостей изменения несущей способности, также приведены зави-

симости измененения момента, восстанавливающего параллель-

ность осей, естественно, если конструкция позволяет.

5.3.1 На рис. 5.3.1 даны вышеописанные зависимости при наклоне

осей перпендикулярно смещению. Как видно из графика, в этом

случае восстанавливающий момент не возникает.

5.3.2 На рис. 5.3.2 и 5.3.3 приведены аналогичные графики при

5.3.3 наклоне по направлению смещения и а противоположном направ-

лении. Из графиков видно, что изменение направления смещения

не меняет характера изменения несущей способности, но меняет

на противоположное направление действия восстанавливающего

момента. Кроме того важен характер протекания этого момента.

С уменьшение минимального зазора момент растет, но при нару-

шении гидродинамики в точке критического зазора момент исче-

зает, а затем появляется с потивоположным знаком. Это проис-

ходит потому, что потеря несущей способности происходит

только в тех точках, которые сблизились на величину крити-

ческого зазора.

Восстанавливающий момент должен уравновешиваться. В слу-

чае шатунного подшипника такая уравновешивающая сила возни-

кает на поршневом конце шатуна и передается на зеркало

цилиндра. Таким образом в двигателе появлется сила трения в

плоскости перпендикулярной плоскости качания шатуна. Величи-

на этой силы может быть вычислена.

5.3.4 Наибольее наглядную иллюстрцию возникновения восстанав-

ливающего момента дают графики на рис. 5.3.4. При перекосе

подшипника и при отсутствии смещения в средней плоскости

подшипника, по краям возникают смещения с разных сторон в

разные стороны. Графики рисунка показывают, как уменьшаются

максимальные давления от края к середине. Этот процесс сим-

метричен для противоположных сторон. Середина симметрична

относительно середины окружности шейки ( кривая 5). Данный

график построен из предположения отсутствия отверстия для

подачи масла, поэтому получается прекрасная симметрия.

5.3.5 В реальном случае, с учетом подачи масла картина сущест-

венно изменяется. На рис. 5.3.5 показано, как в районе 90

градусов появляется пик давления вызванный подачей масла при

давлении 1 кг/см2.

 

- 23 -

6. ВЛИЯНИЕ РЕЖИМА РАБОТЫ

6.1.1-6 На нижеприведенных рисунках 6.1.1 -6.1.6 даны сравни-

тельные результаты законов движения центров подшипников на

различных режимах (индикаторные нагрузки во всех случаях не-

изменны, силы инерции зависят от числа оборотов ):

три диапозона изменения числа оборотов: 1000, 2000 и

3000 об/мин и

три вида форм зазора: правильный зазор, корсетность и

бочкообразность. Величина дефекта формы вырана одинаковой -

5 микрон. Это в три раза меньше допуска для данного диаметра

о