Гидравлический расчет трубопровода с насосной подачей жидкости

Дипломная работа - Разное

Другие дипломы по предмету Разное




ний (сетьб, рис.8), характеристика сети представляет собой прямую линию (линия б, Рис.10).

Точка пересечения характеристики сети с осью абiисс (точка С, линия г) определяет расход при движении жидкости самотеком, то есть за счет разности геометрических высот h (сеть г, рис.8).

.3 Определение потерь энергии на преодоление гидравлических сопротивлений

При движении жидкости в потоке появляются силы трения, направленные против движения, и на работу по их преодолению затрачивается часть энергии. Если энергия потока меньше, чем работа сил трения, то поток не сможет преодолеть работу этих сил и остановится. Без учета сил трения невозможно рассчитать точные количественные характеристики потока.

Гидравлические потери энергии подразделяются на две группы.

. Потери энергии по длине потока. Они наблюдаются в трубах и каналах постоянного сечения и увеличиваются пропорционально длине потока, так как при этом увеличивается поверхность трения.

. Потери энергии в местных гидравлических сопротивлениях, возникающие при деформации потока.

Как правило, деформация потока обусловлена установкой трубопроводной арматуры (краны, вентили, задвижки и др.), а также внезапными сужениями, расширениями и поворотами потока.

Местные потери напора hм определяются по формуле Вейсбаха:

hм = xJ2/2g,(20)

где x - безразмерный коэффициент, зависит от вида и конструктивного выполнения местного сопротивления, приводится в справочной литературе (Приложение 9);

J- скорость движения жидкости в трубопроводе, где установлено местное сопротивление.

Потери энергии на единицу веса (потери напора) по длине потока определяются по формуле Дарси-Вейсбаха:

,(21)

где l- длина потока, J- средняя скорость в сечении потока, dг - гидравлический диаметр, для круглых труб он равен диаметру трубы.

В формуле (26) величина l называется коэффициентом гидравлического трения. Этот коэффициент зависит от режима движения жидкости (числа Re) и состояния поверхности трубопровода.

Существует два режима движения жидкостей - ламинарный и турбулентный.

Граница между ламинарным и турбулентным режимом движения определяется по величине критического значения числа Reкр. Это число зависит от формы сечения канала и от рода жидкости.

Reкр=2300 - для канала круглого сечения

Если расчетное значение числа Re меньше критического (Re < Reкр) -имеет место ламинарный режим движения, в противном случае - турбулентный.

При ламинарном режиме коэффициент гидравлического трения определяется следующим образом:

l = 64 / Re - для канала круглого сечения (22)

Здесь Re - критерий Рейнольдса.

Re = Jdгr /h, (23)

где J - средняя скорость движения в сечении потока, dг - гидравлический диаметр, r - плотность жидкости, h - динамический коэффициент вязкости жидкости.

Величины r и h характеризуют физические свойства жидкости. Они зависят от рода жидкости и температуры и приводятся в справочной литературе. Часто в справочниках вместо динамического коэффициента вязкости h приводится кинематический коэффициент вязкости n = h / r.

В этом случае число Re можно определять так:

Re = Jd /n. (24)

При турбулентном режиме (Re > Reкр) различают три зоны сопротивления:

  1. Зона гидравлически гладких труб (Re кр<Re 10d/Dэ). Здесь коэффициент гидравлического трения зависит только от числа Re и определяется по формуле Блазиуса:

l = 0,316 / Re0,25

. Зона шероховатых труб (10d/D <Re 500d/Dэ). Здесь коэффициент гидравлического трения зависит от числа Re и от относительной шероховатости и определяется по формуле Альтшуля:

l = 0,11(68/ Re +Dэ/d) 0,25(25)

. Зона абсолютно шероховатых труб или квадратичная зона

(Re >500d/Dэ). Здесь коэффициент гидравлического трения зависит только от относительной шероховатости и определяется по формуле Шифринсона:

l = 0,11(Dэ/d) 0,25.

С незначительной погрешностью формула Альтшуля (25) может использоваться как универсальная для всей турбулентной области течения.

Во всех формулах для турбулентного режима Dэ - абсолютная эквивалентная шероховатость, то есть такая высота равномерно-зернистой шероховатости, при которой в квадратичной зоне сопротивления потери напора равны потерям напора для данной естественной шероховатости трубы.

Значение Dэ зависит от материала поверхности трубопровода и от способа его изготовления, приводится в справочниках.

.4 Расчет всасывающей линии насосной установки

В большинстве практических случаев жидкость поступает в насос из резервуара, расположенного ниже оси установки насоса.

Рис. 11. К расчету всасывающей линии

Запишем уравнение Бернулли для сечений 1-1 и 2-2 относительно плоскости сравнения 0-0, преобразуем его в соответствии с данной задачей и определим давление на входе в насос:

1 =0; p1 =pат ; J1 0; J2 =Q/wтр ; z2 =hвс; wтр=pd2/4;

(26)

  • Анализ уравнения показывает, что абсолютное давление на входе в насос меньше атмосферного, и при некоторых значениях параметров Q, hвс и d его величина может стать равной нулю и даже принимает отрицательное значение. Возможны ли такие ситуации в реальной жизни? Нет!
  • Минимально возможное давление в жидкости равно давлению насыщенного пара, то есть тому давлению, при котором жидкость начинает кипеть. Давление насыщенного пара зависит от рода жидкости и температуры (рис.12, п?/p>