Генераторы пилообразного напряжения

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование




?ком заряда приведен на рис. 4.

Рис. 3 - ГПН с постоянным током заряда

Схема данного ГПН, отличается от приведенной ранее, наличием дополнительного элемента - полевого транзистора VT2, который выполняет роль стабилизатора тока. Полевой транзистор поддерживает постоянным ток в резисторе зарядной цепи. Если ток уменьшается, то уменьшается и падение напряжения на резисторе, а это вызывает компенсирующее увеличение тока через транзистор за счет уменьшения сопротивления канала. Поскольку напряжение на затворе меняется в широких пределах, необходимо выбирать полевой транзистор с максимально возможным напряжением отсечки.

Схема еще одного простого генератора пилообразного напряжения со стабилизатором тока в цепи разряда конденсатора показана на рис. 5. Заряд конденсатора осуществляется через транзистор VT1 и сопротивление R. За время заряда напряжение на конденсаторе достигает практически напряжения источника питания. Когда приходит на базу транзисторов нулевой уровень, первый транзистор закрывается, а транзистор VT2 переходит в режим генератора стабильного тока (ГСТ) и через него протекает стабильный постоянный ток разряда конденсатора.

Рис. 4 - ГПН с ГСТ на биполярном транзисторе

Другим подходом получения линейного напряжения ГПН, как отмечалось ранее, является стабилизация тока конденсатора с помощью обратных связей (рис. 6).

Здесь элементы C1, VT1, R1 образуют электронный ключ. Повторитель на VT2 является элементом обратной связи.

В исходном состоянии транзистор VT1 закрыт и конденсатор С3 заряжается через открытый диод и сопротивление коллектора. Изменение напряжения на конденсаторе передается через повторитель, а также конденсатор С2, на диод, который закрывается. После закрытия диода процесс заряда С3 определяется напряжением на С2, который выступает источником постоянного напряжения. Так как напряжение на верхнем выводе R2 следит за напряжением на конденсаторе, то ток заряда постоянный.

При положительном импульсе транзистор VT1 открывается и конденсатор С3 разряжается через него, таким образом, формируется обратный ход пилообразного напряжения, а конденсатор С2 заряжается до своего первоначального состояния через открытый диод.

Рис. 5 - ГПН со следящей обратной связью

1.3 ГПН повышенной линейности

В настоящее время ГПН с малым значением коэффициента нелинейности и его незначительной зависимостью от сопротивления нагрузки создают на основе интегральных усилителей.

В ГПН на операционном усилителе (рис. 7) высокая линейность пилообразного напряжения достигается действием положительной обратной связи в цепи зарядки конденсатора С1.

Во время действия на входе положительного импульса транзистор VT1 открыт и насыщен. Происходит формирование обратного хода пилообразного напряжения, во время которого конденсатор разряжается через малое сопротивление насыщенного транзистора практически до нулевого уровня.

В паузах между входными импульсами транзистор закрыт, и конденсатор заряжается током от источника E. и резистор R3.

Рис. 6 - ГПН на ОУ

Напряжение , образуемое на конденсаторе, поступает на неинвертирующий вход операционного усилителя, работающего в линейном режиме с коэффициентом усиления по неинвертирующему входу

.

В результате на выходе усилителя создается напряжение

,

а на резисторе R4 - напряжение, равное

,

которое создает ток , протекающий через конденсатор в том же направлении, что и ток .

Следовательно, ток зарядки конденсатора в паузах между входными импульсами равен

.

По мере зарядки конденсатора ток уменьшается, а напряжение на конденсаторе и на входе операционного усилителя увеличиваются. Если коэффициент усиления по инвертирующему входу больше единицы, то напряжение на резисторе R4 и протекающий через него ток также увеличиваются. Увеличение данного тока, при соответствующем подборе коэффициента усиления, может полностью скомпенсировать уменьшение тока и зарядка конденсатора будет происходить постоянным током.

Так обеспечивается высокая линейность пилообразного напряжения.

1.4 Описание работы схемы ГПН

Если рассмотренную схему (рис. 7) снабдить сопротивление R6 в эмиттерной цепи транзистора VT1, для формирования требуемой длительности обратного хода, то получим расчетную схему генератора (Приложение 1). Сопротивление R5 ограничивает ток базы транзистора в режиме насыщения. Рассмотрим более детально процессы происходящие в данной схеме. Пусть на входе действует импульс длительности , приводящий к отпиранию транзистора. При условии, незначительного падения напряжения на открытых переходах транзистора, напряжение на конденсаторе в начальный момент времени, приближенно равно падению на сопротивлении R6

. (1)

В силу обратной связи, ток коллектора транзистора равен

. (2)

В свою очередь, токи через соответствующие сопротивления определяются выражениями

, . (3)

Амплитуда управляющего импульса должна быть больше величины

. (4)

При этом на выходе схемы имеется постоянный уровень напряжения равный

. (5)

В момент времени транзистор запирается, и конденсатор начинает заряжаться. Процессы, протекающие в схеме, описываются следующими уравнениями

, , . (6)

Из (6) получаем