Волоконный оптический гироскоп

Курсовой проект - История

Другие курсовые по предмету История

режиме при комнатной температуре. При малом размере активной

области проще получить площадь, свободную от дефектов, что важно для повышения эффективности лазера.

Типичные параметры полупроводниковых лазеров с двойной гетероструктурой, генерирующих в области 0.8 - 0.9 мкм, следующие: ширина линии генерации 0.2 - 5 нм, размеры излучающей области 0.5...30 мкм2 , средняя угловая расходимость излучения 5... 30 (в плоскости, параллельной р - n -переходу) и 30 ... 60 (в плоскости, перпендикулярной р - n -переходу), выходная мощность 1 ... 10 мВт, пороговый ток 20...200 мА, средняя долговечность 105 ч.

Современное состояние технологии изготовления кварцевых оптических световодов позволило создать световоды, имеющие минимум потерь и дисперсии в диапазоне длин волн 1,1 ... 1,7 мкм. Этот диапазон рекомендуется использовать также и разработчикам ВОГ. Эти потребности стимулировали разработку полупроводниковых лазеров на данный диапазон длин волн. Полупроводниковым материалом послужили тройные и четверные соединения. Были созданы полупроводниковые лазеры на гетероструктуре GalnAsP/lnP, излучающие на длинах воли 1,3 и 1,6 мкм. Появились сообщения о создании лазеров с гетероструктурами на основе соединений AIGaAsSb/GaAsSb, генерирующих на длинах волн 1,3 мкм и 1,5... 1,6 мкм.

При этом конструкции и параметры этих лазеров аналогичны конструкциям лазеров на AIGaAs.

Светодиоды (СД) генерируют некогерентное излучение, поскольку в них излучательная рекомбинация носит чисто спонтанный характер. Спектральное распределение линии излучения излучательной рекомбинации по крайней мере на порядок шире линии излучения лазерных диодов. Широкий спектр излучения СД весьма благоприятен для ВОГ, поскольку, за счет малой длины когерентности позволяет компенсировать влияние эффекта Керра и обратного рэлеевского рассеяния.

Коэффициент ввода излучения светодиодов в световоды с низкой числовой апертурой значительно меньше, чем для лазерных диодов. Однако СД проще в конструктивном выполнении и обладает меньшей температурной зависимостью мощности излучения. Так, в частности, выходная мощность СД с двойным гетеропереходом уменьшается лишь в два раза при увеличении температуры диода от комнатной до 100 С.

Возбуждение СД обеспечивается инжекцией носителей через р - n -переход. Как и обычный полупроводниковый лазер, простой СД содержит один р - n -переход в прямозонном полупроводнике, лишь часть инжектированных электронов рекомбинируют излучательно. Остальные теряются на безызлучательных рекомбинациях.

Уменьшить рекомбинационные и оптические потери СД можно, если выполнить прибор с гетеропереходами или даже на двойных гетероструктурах.

СД с двойным гетеропереходом, разработан специально для соединения с волоконным световодом. Область рекомбинации расположена вблизи хладопровода, а в подложке из GaAs протравлена ямка, в которую вставляется световод. Конструируются светодиоды как с выводом излучения через поверхность, ограничивающую переход сверху (плоскостные СД), так и с выводом энергии в направлении, параллельном плоскости р - n -перехода (торцевые СД). При этом выходная мощность составляет несколько милливатт при плотностях тока около 103А/см . Так СД изготовленный на основе AlGaAs-структуры с полосковым контактом шириной 100 мкм при плотности тока накачки 2 103 , имеет мощность излучения 3 мВт на длине волны 0,8 мкм; СД с вытравленной ямкой и линзообразной поверхностью имеет мощность излучения 6 мВт при плотности тока 3400 А/см.

Светодиоды даже при высоких плотностях тока инжекции (свыше 10 А/см) оказываются очень надежными; их средняя долговечность достигает 105 ...106 ч.

Широкое применение получили суперлюминесцентные диоды. Как уже отмечалось, излучательная рекомбинация в обычных светодиодах приводит к спонтанному испусканию света. Это спонтанное излучение вызывает последующие излучательные переходы и усиливает само себя (поскольку концентрация электронов и дырок не является равновесной). Это усиление невелико, поскольку излучение проходит тонкую область рекомбинации в поперечном направлении. Для получения лазерного эффекта нужно это излучение направить вдоль активного слоя и обеспечить отражение от концевых плоскостей. Однако усиление спонтанного излучения в такой конфигурации наблюдается и ниже порога возбуждения и при неотражающих концевых плоскостях. Усиленное и направленное таким образом испускание называется суперлюминесценцией. На этом эффекте и основаны супсрлюминесцентиые диоды (СЛД). При этом активную среду формируют в виде оптического волновода, который замыкается на одном конце хорошо отражающим зеркалом, а на другом конце излучает свет без отражения в пространство либо в световод. Для сильной суперлюминесценции необходимо высокое усиление в активной среде, что в полупроводниках обеспечивается высокой плотностью мощности. Суперлюминесцентные диоды конструируются на основе двойной гетероструктуры с полосковой геометрией. Контактные полоски с одной стороны доходят до торцевой фронтальной поверхности, в то время как с другой стороны они не доходят до края полупроводника. Именно на этой стороне суперлюминесценция затухает, поскольку в эту область электроны не инжектируются. С фронтальной стороны генерируется суперлюминесценция, при этом раскрыв диаграммы излучения определяется шириной и длиной полоски.

При конструировании двойной гетероструктуры с полосковой геометрией для СЛД активная р-область GaAs делается толщиной 0,3 ... 0,5 мкм, контактная полоска - шириной 12.