Вивчення систем, еквівалентних системам з відомим типом крапок спокою
Курсовой проект - Математика и статистика
Другие курсовые по предмету Математика и статистика
p>
[з огляду на всі зроблені позначення] =
=
=
=
[через те, що котре у свою чергу як ми вже показали їсти тотожний нуль]
Таким чином, тотожність (3) щире.
4. Функція, що відбиває
Визначення. Розглянемо систему
(5)
вважає, що права частина якої безперервна й має безперервні частки похідні по . Загальне рішення у формі Коші позначений через ). Через позначимо інтервал існування рішення . Нехай
функцією, що відбиває, системи (5) назвемо функцію , обумовлену формулою
Для функції, що відбиває, справедливі властивості:для будь-якого рішення системи (5) вірна тотожність
для функції, що відбиває, F будь-якої системи виконані тотожності
3) функція буде функцією, що відбиває, системи (5) тоді й тільки тоді, коли вона задовольняє системі рівнянь у частинних похідних
і початковій умові
5. Застосування теореми про еквівалентність диференціальних систем
Одержуємо де - будь-яка непарна безперервна функція.
Поряд з диференціальною системою (1) розглянемо обурену систему (2), де - будь-яка безперервна непарна функція. Відомо по [3], що диференціальна система (3) еквівалентна обуреній системі (4), де безперервна скалярна непарна функція задовольняючому рівнянню
Тому що вище вже показано, що функція де {є перший інтеграл} задовольняє цьому рівнянню, те справедлива наступна теорема.
Теорема 1.
Система (1) еквівалентна системі (2) у змісті збігу функції, що відбиває.
Тому що система (1) має дві особливі крапки, у кожній з яких перебуває центр, те й система (2) має центри в цих крапках.
Висновок
У даній курсовій роботі розглянута вложима система з відомим типом крапок спокою, перевірене задоволення загального рішення нашій системі, знайдені перший інтеграл і перевірений виконання тотожності, потім за допомогою теореми 1 доведена еквівалентність диференціальних систем. Сформульовано визначення вложимої системи, першого інтеграла, що відбиває функції й загальні властивості функції, що відбиває. Сформульована теорема за допомогою якої ми довели еквівалентність нашої системи з диференціальною системою.
Список джерел
1. Мироненко В.І. Лінійна залежність функцій уздовж рішень диференціальних рівнянь. - К., 2001.
2. Мироненко В.І. Функція, що відбиває, і періодичні рішення диференціальних рівнянь. - К., 2004.
3. Мироненко В.І. Збурювання диференціальних систем, що не змінюють тимчасових симетрій. - К., 2004 р.