Вивчення нильпотентної довжини кінцевих груп з відомими додаваннями до максимальних підгруп
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
пи із центром групи відмінно від одиниці й .
Лема 4.5. Нехай - нормальна підгрупа групи . Тоді:
(1) якщо , те й ;
(2) якщо , те й ;
(3) ;
(4) .
Теорема 4.6. Група нильпотентна тоді й тільки тоді, коли її комутант утримується в підгрупі Фратіні.
Теорема 4.7. Нехай . Тоді:
(1) ;
(2) ;
(3) якщо , те ;
(4) якщо й , те .
Лема 4.8. Тоді й тільки тоді підгрупа є додаванням до нормальної підгрупи в групі , коли й .
Наслідок 4.9. (1) Якщо - головний фактор кінцевої групи , те й
(2) Якщо - головний фактор порядку кінцевої групи , те - циклічна група порядку, що ділить .
Теорема 4.10. (1) Якщо існує натуральне число таке, що , то група нильпотентна.
(2) Щабель нильпотентності нильпотентною групи є найменше натуральне число , для якого
Лема 4.11. Нехай . Тоді:
(1) якщо , те або , або й ;
(2) якщо абелева й для деякої власної підгрупи групи , те ;
(3) якщо й , те .
Висновок
У даній дипломній роботі викладені основи теорії нильпотентної довжини кінцевої розвязної групи, проведене дослідження величини нильпотентної довжини кінцевих розвязних груп з відомими додаваннями до максимальних підгруп. У роботі розглянуті наступні питання: підгрупа Фиттинга кінцевої розвязної групи і її властивості; нильпотентна довжина й інші інваріанти кінцевої розвязної групи; ознаки можливості розвязання кінцевої групи з відомими додаваннями до максимальних підгруп; знаходження величини нильпотентної довжини розвязної групи з відомими додаваннями до максимальних підгруп.
У першому розділі "Підгрупа Фиттинга і її властивості" вивчені властивості підгрупи Фиттинга. Доведено теореми К. Дерка й Монахова В.С.
У другому розділі " - довжина -розвязної групи" дані необхідні визначення й доведене теорема.
У главі "Група з нильпотентними додаваннями до підгруп" доведена важлива теорема:
Теорема. Кінцева нерозвязна група з нильпотентними додаваннями до несверхразрешимих підгруп ізоморфна або , де - нильпотентна група, а й - прості числа.
Також доведений наслідок із цієї теореми.
Наслідок. Кінцева нерозвязна група, у якій всі підгрупи непримарного індексу понад розвязні, ізоморфна або , де - - група, або , де - -група.
Список використаних джерел
[1] В.А. Белоногов. Задачник по теорії груп. - К., 2000.
[2] С.С.Левищенко. //Деякі питання теорії груп. К., 1975. С. 173-196.
[3] В.С. Монахов. Введення в теорію кінцевих груп і їхніх класів. К., 2000
[4] В.С. Монахов. Нерозвязні кінцеві групи з нильпотентними додаваннями. К., 2004
[5] М.В.Селькин. Максимальні підгрупи в теорії класів кінцевих груп. - К., 1997.
[6] М.Хол. Теорія груп. К., 2005
[7] Л.А.Шеметков. Формації кінцевих груп. К., 2006
[8] Скиба А.Н., Шеметков Л.А. Формації алгебр із що доповнюються підформаціями // Укр. мат. журн. - 1991. - Т. 43, № 7, 8. - С. 1008-1012.
[9] Скиба А.Н. Алгебра формацій. К., 2004
[10] Черніков С.М. Групи із заданими властивостями системи підгруп. К., 2000
[11] Guo Wenbin. Local formations in which every subformation of type has a complement // Chinese science Bulletin. - 1997. - Vol. 42, № 5. - P. 364-368.
[12] Hall P. A characteristic property of soluble groups // J.London Math. Soc. - 1937. - 12. - P. 198-200.
[13] Huppert B. Endliche Gruppen. I. Berlin-Heidelberg-New York, 1976.
[14] Монахов В. С. Кінцеві групи. К., 2004