Вероятностно-статистические методы моделирования экономических систем

Дипломная работа - Менеджмент

Другие дипломы по предмету Менеджмент




26, то она будет случайной величиной и в смысле определения 27, поскольку любой интервал является борелевским множеством.

Докажем, что верно и обратное. Пусть для любого интервала выполнено . Мы должны доказать, что то же самое верно и для любых борелевских множеств.

Соберём в множестве все подмножества вещественной прямой, прообразы которых являются событиями. Множество уже содержит все интервалы . Покажем теперь, что множество является -алгеброй. По определению, тогда и только тогда, когда множество принадлежит .

1. Убедимся, что . Но и, следовательно, .

2. Убедимся, что для любого . Пусть . Тогда , так как - -алгебра.

3. Убедимся, что для любых . Пусть для всех . Но - -алгебра, поэтому

Мы доказали, что - -алгебра и содержит все интервалы на прямой. Но - наименьшая из -алгебр, содержащих все интервалы на прямой. Следовательно, содержит : .

Приведём примеры измеримых и неизмеримых функций.

Пример 25. Подбрасываем кубик. Пусть , и две функции из в заданы так: , . Пока не задана -алгебра , нельзя говорить об измеримости. Функция, измеримая относительно какой-то -алгебры , может не быть таковой для другой .

. Если есть множество всех подмножеств , то и являются случайными величинами, поскольку любое множество элементарных исходов принадлежит , в том числе и или . Можно записать соответствие между значениями случайных величин и и вероятностями принимать эти значения в виде таблицы распределения вероятностей или, коротко, таблицы распределения:

Здесь .

2. Пусть -алгебра событий состоит из четырёх множеств:

,

т.е. событием является, кроме достоверного и невозможного событий, выпадение чётного или нечётного числа очков. Убедимся, что при такой сравнительно бедной -алгебре ни , ни не являются случайными величинами, поскольку они неизмеримы. Возьмём, скажем, . Видим, что и

2. Числовые характеристики случайных величин

Математическое ожидание. Математическим ожиданием дискретной случайной величины Х, принимающей конечное число значений хi с вероятностями рi, называется сумма:

(6а)

Математическим ожиданием непрерывной случайной величины Х называется интеграл от произведения ее значений х на плотность распределения вероятностей f(x):

(6б)

Несобственный интеграл (6б) предполагается абсолютно сходящимся (в противном случае говорят, что математическое ожидание М (Х) не существует). Математическое ожидание характеризует среднее значение случайной величины Х. Его размерность совпадает с размерностью случайной величины. Свойства математического ожидания:

(7)

Дисперсия. Дисперсией случайной величины Х называется число:

(8)

Дисперсия является характеристикой рассеяния значений случайной величины Х относительно ее среднего значения М (Х). Размерность дисперсии равна размерности случайной величины в квадрате. Исходя из определений дисперсии (8) и математического ожидания (5) для дискретной случайной величины и (6) для непрерывной случайной величины получим аналогичные выражения для дисперсии:

(9)

Здесь m = М (Х).

Свойства дисперсии:

(10)

Среднее квадратичное отклонение:

(11)

Так как размерность среднего квадратичного отклонения та же, что и у случайной величины, оно чаще, чем дисперсия, используется как мера рассеяния.

Моменты распределения. Понятия математического ожидания и дисперсии являются частными случаями более общего понятия для числовых характеристик случайных величин - моментов распределения. Моменты распределения случайной величины вводятся как математические ожидания некоторых простейших функций от случайной величины. Так, моментом порядка k относительно точки х0называется математическое ожидание М (Х - х0) k. Моменты относительно начала координат х = 0 называются начальными моментами и обозначаются:

(12)

Начальный момент первого порядка есть центр распределения рассматриваемой случайной величины:

(13)

Моменты относительно центра распределения х = m называются центральными моментами и обозначаются:

(14)

Из (7) следует, что центральный момент первого порядка всегда равен нулю:

(15)

Центральные моменты не зависят от начала отiета значений случайной величины, так как при сдвиге на постоянное значение С ее центр распределения сдвигается на то же значение С, а отклонение от центра не меняется:

Х - m = (Х - С) - (m - С).

Теперь очевидно, что дисперсия - это центральный момент второго порядка:

(16)

Асимметрия. Центральный момент третьего порядка:

(17)

служит для оценки асимметрии распределения. Если распределение симметрично относительно точки х = m, то центральный момент третьего порядка будет равен нулю (как и все центральные моменты нечетных порядков). Поэтому, если центральный момент третьего порядка отличен от нуля, то распределение не может быть симметричным. Величину асимметрии оценивают с помощью безразмерного коэффициента асимметрии:

(18)

Знак коэффициента асимметрии (18) указывает на правостороннюю или левостороннюю асимметрию (рис. 2).

Рис. 1. Виды асимметрии распределений

Экiесс. Центральный момент четвертого п?/p>